Survey of Ad Hoc Network Routing Protocols

Team Adhocracy Presentation 2 – April 12, 2007

Jason Winnebeck Benjamin Willis Travis Thomas

Coming Up

- Project Summary
- Research Papers
 - DSR
 - Champ
 - GPSR
- Simulation Details
- Question/Comments
- References

Project Summary

- Compare three Adhoc routing algorithms
 - DSR
 - Champ
 - GPSR
- Attempt to determine benefits and weaknesses of each algorithm
- Use metrics to determine which one works the best

Paper 1: Dynamic Source Routing

- DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks
 - Ad Hoc Networks
 - 2001
- Obtained from:

http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps

Figures in slides are from the paper

Dynamic Source Routing

- Features
 - Reactive protocol (on-demand)
 - Source routing
 - Supports uni-directional links
 - (optimizations available for bi-directional)
 - Heterogeneous networks
 - Integration with Mobile IP networks
- Non Features
 - Address assignment
 - Multicast

Source Routing Advantages

- Allows the sender to choose paths to destination
- Up-to-date information is not needed in intermediate nodes
- Can allow caching of routes and optimization

Route Discovery Process

- Source broadcasts, destination replies
- Route reversal is possible with bi-directional links
- Responding from cache is possible
 Delays needed to prevent collisions
- Max hops equal to 0 for neighbor discovery

Route Maintenance Process

- Each transmission is confirmed, if confirmation fails, send route error
 - Source node does route discovery, attaching routing error to update caches
- Negative information caching possible
- Route Shortening

Other Features

- Heterogeneous network support
- Mobile IP gateway to Internet

DSR Summary

- Advantages
 - Overhead goes to absolute zero in stationary network
 - Actual implementations exist
 - Unidirectional support
- Disadvantages
 - No multicast support
 - Scaling

Paper 2: CHAMP

- <u>Caching and Multi-Path routing protocol</u>.
- Obtained from:

ALVIN C. VALERA, WINSTON K.G. SEAH AND S.V. RAO, CHAMP: A Highly Resilient and Energy-Efficient Routing Protocol for Mobile Ad hoc Networks. In Proceedings of the 5th IEEE Conference on Mobile and Wireless Communications Networks (MWCN 2002), Stockholm, Sept 9-11, 2002.

http://texaspecanfest.com/trophy.jpg

Champ Problem

- Improve routing reliability in mobile ad-hoc network.
- While decreasing energy consumption.

http://www.schestowitz.com/IMG/blog/battery_low.jpg

Claims

- 5-packet FiFo and 2 paths
 - Significant improvement over DSR and AODV
- High Loads
 - Champ delivers 50%(DSR) to 30%(AODV) more packets
 - While consuming 1/3(DSR) 1/2(AODV) energy per packet delivered

Basic Concept

- When route error occurs
 - Tells upstream nodes about it.
 - They have cached copy of packet.
 - If they have another route they send it.
- Multi-path
 - Has more then one path to Destination
 - Chooses one used least for that transmission

Picture

Protocol Messages

 RREQ(Source, Destination, Sequence Number, previous node, forward count, last known difference, propagation range(hops))

http://www.ahajokes.com/cartoon/directions.jpg

Protocol Messages

 RREP(Source, Destination, sequence number (from request), previous hop, set of nodes that can accept message, hop count from previous node to destination +1, age or route, total route length.

Protocol Messages

RERR(source, destination, sequence number, previous hop, error generator)

http://www.rivervalleymuseum.org/images/railroad_history2/images/bridge_out.jpg

Data Structures Needed

- Route Cache:
 - contains forwarding information
- Route Request Cache:
 - For storing route requests information
- Send Buffer:
 - Packets awaiting routes
- Data Cache
 - Recently forwarded packets.

Paper 3: GPSR

- GPSR: Greedy Perimeter Stateless Routing for Wireless Networks
 - Mobile Computing and Networking
 - 2000
- Obtained from: http://doi.acm.org/10.1145/345910.345953

Greedy Perimeter Stateless Routing

- Features
 - Geographical Data
 - Stateless, less protocol message overhead
 - Simple packet forwarding
 - Small packet header

Geographical

G

Ε

- Simple Beacon message
 - Contains unique identifier
 - Originators location
- Beacon Interval is key to keeping neighbors up to date
- To reduce power consumption beacon data is also sent with standard packets

Greedy Routing

 Calculates distance to destination, forwards packets to closest

Perimeter Routing

- Handles special cases when Greedy routing fails
- RHR
- Attempts to work around "voids"
- If finds no path around void, possible disconnect in network, packet dropped

GPSR Summary

- Advantages
 - Simple routing
 - Small packet headers (5 parameters)
 - Stateless
 - Non-source
- Disadvantages
 - Beaconing/Stateless (energy)
 - Non-source

Simulation Details

Simulation Properties

- Nodes can move
- Bidirectional Links
- Static node transmission ranges
- Nodes know who they are sending to
- Simulation Tests
 - Static Network
 - Random Moving Network
 - Real life simulations (node moving through field)
 - Vary total nodes, field size and sending time

More Simulation Details

- Metrics for Analysis
 - Protocol Messages
 - Packets Delivered/Dropped Packets
 - Protocol/Packet Bytes through each node
 - Number of Hops
 - Collisions
 - Packet Distance
 - Packet Time
 - Power Usage (simple)

Comments/Questions

References

- Johnson, David B., Maltz, David A., Broch, Josh. 2001. DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. in Ad Hoc Networking, edited by Charles E. Perkins, Chapter 5, pp. 139-172, Addison-Wesley, 2001. Obtained from http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps
- ALVIN C. VALERA, WINSTON K.G. SEAH AND S.V. RAO, CHAMP: A Highly Resilient and Energy-Efficient Routing Protocol for Mobile Ad hoc Networks. In Proceedings of the 5th IEEE Conference on Mobile and Wireless Communications Networks (MWCN 2002), Stockholm, Sept 9-11, 2002.
- Karp, B. and Kung, H. T. 2000. GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual international Conference on Mobile Computing and Networking (Boston, Massachusetts, United States, August 06 - 11, 2000). MobiCom '00. ACM Press, New York, NY, 243-254. DOI= http://doi.acm.org/10.1145/345910.345953