
Survey of Ad Hoc Network Routing Protocols
Adhoc Networking

May 20, 2007
Professor Kaminsky
Team Adhocracy:

● Jason Winnebeck
● Benjamin Willis
● Travis Thomas



Table of Contents
Description................................................................................................................................................. 3
DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks.......................4
Caching and MultiPath Routing (Champ)................................................................................................. 6
Greedy Perimeter Stateless Routing (GPSR).............................................................................................6
Design........................................................................................................................................................ 7

Core Simulation Design........................................................................................................................ 8
Network Data Design............................................................................................................................ 8
Node Design.......................................................................................................................................... 9
Routing Algorithm Design.................................................................................................................. 10

Dynamic Source Routing................................................................................................................11
Greedy Perimeter Stateless Routing............................................................................................... 11
Caching and Multi-path Routing Protocol......................................................................................11

User Manual............................................................................................................................................. 11
Run...................................................................................................................................................... 12

Compile.......................................................................................................................................... 12
Input File.........................................................................................................................................12

Sample........................................................................................................................................14
Output............................................................................................................................................. 15
Adding Additional Algorithms....................................................................................................... 16
Sample Tests...................................................................................................................................16

Results......................................................................................................................................................16
Lessons Learned.......................................................................................................................................20
Future Work............................................................................................................................................. 21
References................................................................................................................................................ 22



Description
Team Adhocracy simulated routing algorithms that claim to be good if used in an Ad hoc network. 

The ad hoc networking environment presents many challenges that are not present in a normal network. 

The first such challenge is that ad hoc networks may have quickly changing topologies.  Nodes could 

join and leave the network as they please.  Also nodes may be moving around within the network so a 

path through them to a destination one minute may no longer work the next.

We decided to make our own simulation that we could run and test our algorithms on.  The 

simulator we decided to build was a discrete event simulator.  Each routing algorithm implements an 

algorithm that will be called from the simulator when an event is ready to be processed by a node that 

is running that routing algorithm.  This interface includes fours functions.  The first function is arrived 

this function is called whenever a packet has been routed to the node that is being called.  Terminate is 

called when a packet has reached its destination node.  Overheard is called when a packet is in range 

and is able to overhear a packet it will then be able to gather information that was not directly intended 

for it but that it may want to hear as well.  NewPacket is called when the packet is “being” started at  a 

node in the network.

We decided to implement three routing algorithms.  The first was DSR which is an 

algorithm that has been around for some time.  It was originally developed for use of more traditional 

networks.  Many ad-hoc routing protocols use it as a baseline for their results.  Many researchers in the 

field also seem to believe that source routing is the best bet for Ad-hoc routing protocols.  

GPSR Greedy Perimeter Stateless Routing is an algorithm that uses the locations of the 

nodes that it know from some outside means to allow it to route packets. The basic principle behind 

this algorithm is that it calculates the distance to the destination and then chooses a node that it can 

reach that is is the closest to it.  When this simple strategy fails it tries to get around the void by using 

perimeter routing.  We felt this was interesting since it is radically different then most routing 

algorithms that exist for more traditional networks.

Champ is an algorithm that talks a lot about how much better it is then other algorithms.  It 

is similar to DSR in that when it gets a new packet it must send out a route request.  The difference is 

that this path is stored a hop at a time along the shortest paths that the route requests used to get to the 

destination.  Each node along the path will store successors on the way to the destination.  When a 

route error occurs Champ is supposed to be able to try and correct this at the intermediate nodes.  

Each algorithm was run in the same tests with the same packets being generated as well as 

the same node movement properties.  The algorithms will then be compared against each other using 



various metrics.  

DSR: The Dynamic Source Routing Protocol for Multi-Hop 
Wireless Ad Hoc Networks
by David B. Johnson, David A. Maltz, and Josh Broch

The Dynamic Source Routing (DSR) protocol defines a reactive routing scheme for multi-hop wireless 

ad hoc networks. A reactive scheme differs from a proactive scheme in that the routing protocol only 

needs to do routing tasks when packets need to be sent, therefore when there is no network traffic, the 

wireless network is silent.

DSR is meant to work in a wireless ad-hoc environment, which has some attributes (some explicitly 

mentioned and some implied by the authors):

● Packet loss is not uncommon, so packet acknowledgments at a per-node level is appropriate.

● Nodes can move, but not so fast that the only algorithm that can work well is a pure flooding 

algorithm.

● The network size is reasonable. Specifically the important aspect is the network's diameter, 

which is defined by the paper as the “minimum number of hops necessary for a packet to reach 

from any node located at one extreme edge of the ad hoc network to another node located at the 

opposite extreme.” The paper states the assumption of a small diameter of 5 to 10 hops.

● The network links may be unidirectional. Not all other routing algorithms can work with 

unidirectional links, so this is a benefit of DSR.

● Each node has a single, unique address (therefore nodes with multiple interfaces need to pick a 

single address)

Some aspects of the network are not required, but DSR can operate better under a few circumstances:

● Wireless adapters can run in “promiscuous” mode so that they receive all packets, including 

those not addressed specifically for a particular node.

● Assumed bidirectional links allows for better caching, route reversal, and acknowledgments.

DSR is comprised of two main mechanisms:

1. Route Discovery: attempts to find a route or routes from a source node to the destination node 

(based on the addressing information in the packet)



2. Route Maintenance: handles problems when a neighbor become unreachable or unresponsive 

due to noise, movement, or power down.

In route discovery, DSR floods a route request packet through the network. As the packet passes 

through nodes, they append their address on the route taken by the packet so far. When the flooded 

packet reaches the destination node, it responds with a route reply containing the route taken by the 

request. The source node receives the replies and can pick the best route and optionally cache any 

alternative routes found.

When a data packet is sent, the source node places the entire route for the packet in the header. Each 

node forwards the packet to the next hop based on the information in the packet and not their own 

information.

In route maintenance, each node when sending a packet through the network, checks for positive 

arrival at the next hop through implicit or explicit acknowledgment. Implicit acknowledgments are 

possible in networks with bidirectional link-layer protocols (such as 802.11). The nodes will resend a 

packet a certain number of times, and if the send is not acknowledged within a certain period, a route 

error is sent back to the source node, which invalidates all routes with the broken link. After a route is 

invalidated, the source node can attempt a new route discovery.

Nodes can obtain a large amount of information by the route requests, replies and errors that travel 

through them or are overheard in “promiscuous” networking mode, and can cache and generate routes 

even if they did not initiate route discovery, to have routes to use when they do send packets, or to 

respond to route requests before having to reach a destination by responding from a cache.

The authors conclude based on the simulated and real-world experiments that DSR is appropriate for 

wireless ad hoc networks with high movement and packet loss and that the reactive nature of the 

protocol allows it to scale to need only overhead for tracking routes currently in use.

DSR is a very flexible protocol, but it does have a few weaknesses:

● DSR does not support multicast routing (although it can approximate this through the same 

flooded broadcast used in route discovery).

● The network diameter is limited because of the nature of route discovery and source routing 

requiring full routes to be stored in packet headers.

● The ability for DSR to recover a packet that could be lost in a route error is limited. There is a 

packet salvaging mechanism, but it can only attempt to salvage a packet once. Therefore, 



resends at the application layer is important.

Caching and MultiPath Routing (Champ)
Caching and Multi-Path(Champ) routing protocol.  Champ was designed to be a good 

algorithm to use in a mobile ad-hoc network where the topology of the network is changing often.  This 

problem is caused by the very nature of ad-hoc networks.  Nodes in the network may be running on 

batteries so they may run out of juice and leave the network a user may also simply decide to shut a 

device off.  The device could also be attached to something that is moving so they would be moving 

through the network and changing the topology.  Since ad-hoc networks rely on devices that are using 

the network to also route the messages this can be difficult for many traditional networking algorithms 

to handle.  The authors believe that reactive protocols are showing promise in this challenging area of 

research.  A reactive protocol is one that reacts to correct route errors as they are detected.  Champ tries 

to take advantage of this idea.  

Many algorithms including DSR are considered reactive and are able to repair their routes 

quickly and on the fly.  The authors main contribution in this paper is the idea of caching data packets 

along the route.  This allows the Champ algorithm to not only repair the path but also resend the packet 

instead of just dropping it.  Champ relies on the following protocol messages and information in order 

to accomplish being able to do this.  Nodes in the Champ protocol exchange three types of protocol 

messages to be able to maintain the network .  Route Request messages are flooded to the network.  In 

order to try and find a route to the destination.  These route request have a lot of data that travels along 

the way with them including source of packet, destination of packet,      

We plan to use this paper to implement the Champ algorithm in our simulation.  Then 

compare it against GPSR and DSR and determine if this algorithm would be a good fit for an ad-hoc 

network like that authors claim.        

Greedy Perimeter Stateless Routing (GPSR)
The approach take by the algorithm GPSR is based upon the known locations of the nodes in the 

network.  With this advantage it utilizes two separate routing techniques to achieve an optimal path 

through a moving network.  Also, another concern in the development of the algorithm was the ability 

to scale in a large network, in which it attempts to benefit again from it's location awareness.

One major assumption is made in order for this algorithm to work.  That assumption is that the 

destination location is known.  The algorithm does not provide means to identify the location of a given 

address, but it does suggest ways in which to get the location.  These separate techniques are not 



considered in the development and scalable design consideration.  It is suggested that several location 

databases are stored throughout the network and they are connected, for replication purposes, via 

backbone.

In order to allow this algorithm to scale appropriately, many different considerations where evaluated. 

First and foremost, the size of the of all packets were kept at a minimum.  Because of the stateless 

nature of the algorithm, all packets have, essentially, a fixed size, less the size of the payload.  Next, the 

number of protocol only messages are kept to a minimum.  Again, because of the stateless nature of the 

algorithm, the only protocol messages that are sent throughout the network are beacons, which identify 

the locations of the neighbors.  Another consideration is the footprint of the algorithm on each node. 

Considering the variability of nodes, which act as some sort of sensor as well as router, the complexity 

and size is kept to a minimum with a simpler algorithm and limited storage of network data.

Packets can have modes, and the initial and main mode that is used for routing is the first part of the 

name, greedy.  At each node, the immediate 1 hop neighbors and their locations are known.  With the 

destination location known, a simple distance formula can be computed to find the 1 hop neighbor that 

is in the closer  in direction to the destination than the source.  If one if found, then this packet is 

forwarded.

There are other instances in which a greedy path cannot be found.  Consider when two nodes are on the 

opposite side of a lake and there are no nodes in the middle, making a void.  Nodes exist on the 

perimeter, which have a path, but the initial hop may not be closer, hence not satisfying the greedy 

algorithm.  In such a case, the second part of GPSR's name comes into play, perimeter.  A packet is 

changed into perimeter mode only when a greedy path cannot be found.  When a packet is in perimeter 

mode, it evaluates it's neighbors in counter clockwise order from the line between the source and 

destination.  This implements a right hand rule that keeps the next forwarding node selected on the 

inside of the voids perimeter.  In a path from destination to source, continuing with the perimeter 

routing results in the opposite perimeter being routed.  This continues until the greedy algorithm can 

take over once again.  When a packet is continually forwarded around a perimeter, and returns again to 

the originator, which is stored, it will be dropped, being that the destination is unreachable.

The results achieved in the research paper were compared to DSR.  The results showed a higher packet 

delivery rate and a significantly lower protocol message overhead.

Design
The simulation is implemented as a discrete event simulation, so that it can be run in faster than real-

time as well as eliminating any errors related to time discretization that might occur in a time step style 



simulation.

Core Simulation Design

The AdhocSimulation class is the entry point for the program, which takes input and output 

information (as described later in the user guide). The SimulationBuilder then constructs the simulation 

and all objects that run in the simulation world (nodes, algorithms, location managers, etc). The 

SimulationRunner runs the Simulation to completion and collects the results for output to an XML file, 

whose format is described in the user guide.

The Simulation class itself simply implements an event loop that checks for the next occurring event, 

advances the simulation time to that event's time, then processes the event by calling its perform 

method. Any action taken in the simulation that takes time is scheduled as an event. For the most part, 

it is considered that any simulated computers are “infinitely” fast in that processing code does not 

advance simulation time. Any network interaction does take time.

Some other core classes not shown are used by the simulation builder to help set up the environment. 

The TrafficGenerator generates packets to be sent in the network, and a few location generators exist to 

place nodes in the network.

Network Data Design

Network data is separated into three components:

+next() : bool
+scheduleEvent(in t : double, in event : SimulationEvent)

+time : double
Simulation

+buildSimulation() : Simulation

SimulationBuilder

+perform(in sim : Simulation, in t : double)

«interface»
SimulationEvent

-events1..*

+main()

AdhocSimulation

+runSim()

SimulationRunner

1

-sim 1

-idlePowerUse : double
-transmitPowerUse : double
-transferRate : double
-noiseRate : double
-randomSeed : double

SimulationParameters

1
-params1

-source : int
-dest : int
-dataSize : int

Packet

-source : int
-dest : int

HardwareFrame

1

-packet

1

«interface»
ProtocolFrame

1

-protoFrame

1



1. Data link layer (HardwareFrame)

2. Network layer (ProtocolFrame)

3. Transport and above layers (Packet) “User Data”

The physical layer is simulated by the World class, which is discussed layer. The HardwareFrame and 

Packet behaviors are fixed and are provided by the simulation engine. The specific routing protocol 

algorithm implementations can create any number of ProtocolFrame implementations to carry their 

information. In a strict layering design, the Packet would be contained within the ProtocolFrame, but 

we put this object in the HardwareFrame because we felt that it would be easier for the simulation 

framework to monitor and handle data this way, but in a real network if we were to serialize packets, a 

formal layer distinction would likely be made.

Node Design

The World implements the physical layer in the simulation and keeps track of all of the nodes. When a 

node transmits a frame, it is sent to the World, which decides which Nodes receive that frame (a Node 

also receives its own frames as a loopback, after transmission is complete).

The Node serves as the central class for the simulation, keeping track of a LocationManager to manage 

its location and a RoutingAlgorithm (design discussed later). The Node class also collects statistics to 

-address : int
-powerUsed : double
-transRange : double

Node

-x : double
-y : double

Location

+getLocation(in time) : Location

«interface»
LocationManager

1-location1

+getLocation(in time) : Location

-source : Location
-dest : Location
-arrivalTime : double

RandomLocationManager

+getLocation(in time) : Location

FixedLocationManager

1
-loc 1

+sendFrame()
+addNode()
+getNode()
+removeNode()

World

1

-nodes

*

+getLocation(in time) : Location

SetLocationManager



be sent to a NodeMonitor (not shown) which can be later harvested by the SimulationRunner to 

construct the outputs.

The LocationManager manages the Node's location as a function of time, and is usually implemented 

as a constant or a function of interpolation between points.

1. FixedLocationManager handles stationary nodes

2. RandomLocationManager handles nodes that move to a random location, pause, then start 
moving again

3. SetLocationManager handles a node that moves between two explicitly specified points

Routing Algorithm Design

The RoutingAlgorithm interface is implemented by all four implemented algorithms in our simulation:

1. FloodingAlgorithm floods every data packet, and is meant as a simple baseline algorithm

2. DSRRoutingAlgorithm implements DSR

3. ChampAlgorithm implements Champ

4. Algorithm (in Sim.Routing.GPRS package) implements GPSR

Each algorithm may implement some or all of the RoutingAlgorithm methods depending on what 
actions they wish to take.

1. setSimulation: Sets the simulation for this RoutingAlgorithm. This method must be called 
immediately after construction and before any other methods.

2. attached: Event called when a Node is given a RemoteAlgorithm to route packets for it.

3. arrived: Event when a HardwareFrame arrives destined for this Node that does not have a user 
Packet, or has a Packet not for this Node. The data in the frame may need to be routed.

4. terminated: Event when a HardwareFrame arrives destined for this Node that has a user Packet 
that is destined for this Node. The data has arrived at its final destination, so it does not need to 
be routed.

5. overheard: Event when a HardwareFrame is overheard by a Node (the HardwareFrame's 
destination is not the Node).

6. loopback: Event when a Node hears its own HardwareFrame (which is guaranteed to happen 

+setSimulation(in sim : Simulation)
+attached(in node : Node)
+arrived(in frame : HardwareFrame)
+terminated(in frame : HardwareFrame)
+overheard(in frame : HardwareFrame)
+loopback(in in : HardwareFrame)
+newPacket(in dest : Node, in packet : Packet)

«interface»
RoutingAlgorithm



after a send completes).

7. newPacket: Event when a Node wants to send a new Packet. The RoutingAlgorithm should 
bundle the Packet in a HardwareFrame and send it through the Node.

Dynamic Source Routing
The DSR paper has a large number of features. Only a very small portion are needed to for DSR to 
work at all, but many of them help the protocol to work better. We were unable to implement all 
features. The following features were implemented:

● Route Request with linear backoff resending

● Route caching on all nodes where a request or reply travels through or terminates

● Frame routing based on source path in header

● Frame retransmission with implicit ACK where possible, explicit ACK when needed

● Route maintenance and route error

● Handling of route errors in intermediate nodes and nodes who can overhear

The following features are not implemented:

● Route error propagation in discovery

● Caching of overheard route replies

● Route shortening

● Responding to route requests from route cache in intermediate nodes (mostly because without 
route shortening this feature added alone could worsen DSR)

● Caching of route errors

Greedy Perimeter Stateless Routing
All features from the GPSR paper were implemented.  The main features included in this simple 
routing algorithm are the following

● Beaconing for neighbor identification

● Overheard message location caching

● Greedy algorithm shortest distance to destination

● Perimeter algorithm using counter clockwise node selection and RHR

Caching and Multi-path Routing Protocol

User Manual
The following section identifies how to compile and run the simulation, the format of the input file, the 

format of the output file, how to add additional routing algorithms and the sample tests that are 

available.



Run
A script is provided to run individual algorithms through each of 6 tests.  The scripts are

● runGPSR.sh

● runDSR.sh

● runFlooding.sh

● runChamp.sh

Note: Some tests may take several minutes to run.

Compile
To compile the java project another script is provided called compile.sh.  This will compile the source 
code for this project.

Input File
An input file is required to specify the parameters of the simulation.  There are several parameters that 

are identified in the following tables, each table specifies a new line of the text input file.

Input File Line 1, General Parameters
Name Description Type Sample Values

Routing 
Algorithm

The algorithm that is to be loaded for 
simulation, available algorithms are 
GPSR, DSR and Champ (see sample 
for actual values)

String Sim.Routing.GPSR.Algorithm
Sim.Routing.DSR.DSRRoutingAlgorithm
Sim.Routing.Champ.ChampAlgorithm

Nodes The number of nodes that will exist in 
the simulation

Int 10
100
1000

Transmiss
ion Range

The area in meters around the nodes 
that they will be able to communicate

Int 1
5
10

Idle 
Power

The amount of power for a node to 
consume when it is not transmitting

Double 0.0
0.5
0.9

Transmit 
Power

The amount of power for a node to 
consume when it is transmitting

Double 1.0
5.0
10.0

Transfer 
Rate

The number of bits per second to 
transfer.

Double 1000
10000
100000



Input File Line 1, General Parameters
Name Description Type Sample Values

Noise The percentage of packets that can be 
dropped during transmission.

Double 0.0
0.1
0.2

Duration The total amount of time in seconds 
for the simulation to run

Int 100
1000
10000

Seed A random seed to ensure that 
simulations with different algorithms 
have the same setup

Int 3
23
2342

Area The square area (meters) of the 
simulation in which nodes can be 
contained.

Double 100.0
1000.0
10000.0

Initial 
Locations

Specifies whether the nodes start in a 
uniform grid separation (0) or are 
randomly (1) placed within the area.

Bool 1
0

Packet 
Size

The size of the packets in bits. Int 1
8
16

Movemen
t Speed

Speed in meters per second for a node 
to move if movement is specified.

Double 1.2
2.3
5.1

Input Table Line 2, Movement Parameters
Name Description Type Sample Values

Type of Movement 0 for no movement
1 for random movement
2 for fixed movement

Int 0
1
2

Node Only for fixed 
movement, specifies the 
node address to move. 
Node's are addressed 
sequentially from 0 to 
total nodes – 1.

Int 32
3
21

Source X
Source Y
Destination  X
Destination Y

Number coordinate that 
must be within the area 
specified in the general 
parameters.

Double 12
3.2
4.1 7.3



Input Table Line 3, Communication Parameters
Name Description Type Sample Values

Type of Communication 0 for random
1 for fixed

Int 0
1

Source Only for fixed 
communication, address 
of node to start 
communication from. 
Node's are addressed 
sequentially from 0 to 
total nodes – 1.

Int 132
3
32

Destination Only for fixed 
communication, address 
of node to complete 
communication. Node's 
are addressed 
sequentially from 0 to 
total nodes – 1.

Int 21
3
4

Input Table Line 4, Title
Name Description Type Sample Values

Title Name of the simulation 
to put on the output 
files.

String My Great Adhoc 
Simulations
Simulation of Death

Sample

The following is a sample of a simulation.  The main features of this simulation are a uniform static 

grid positions with fixed communication from node 0 to node 8 (the corners).

Sim.Routing.Champ.ChampAlgorithm 9 2 0 1 100000 0 1000 51 400 0 8 0
0
0 0 8
Champ Test 1

S

D



Output
At the end of a simulation several outputs are compiled.  These outputs are in xml format.

Output Table
Xpath Description

simulation/parameters/name From input, simulation namee
simulation/parameters/noiseRate From input, % noise rate
simulation/parameters/randomSeed From input, seed
simulation/parameters/duration From input, simulation time
simulation/parameters/transferRate From input, transfer rate
simulation/parameters/transmitPowerUse From input, transmit power
simulation/parameters/idlePowerUse From input, idle power
simulation/parameters/totalNodes From input, total nodes
results/packets/totalSent Total packets send
results/packets/totalReceived Total packets received
results/packets/loss % packet loss
results/packets/hopsPerPacket Average hops per packet.
results/packets/totalHops Total number of hops for all packets sent.
results/packets/minPacketHops Shortest hops from source to destination.
results/packets/distPerPacket Average distance per packet sent.
results/packets/totalDist Total distance of all packets sent.
results/packets/minPacketDist Shortest packet distance.
results/packets/timePerPacket Average latency for a packet.
results/packets/totalTime Total latency for all packets.
results/packets/minPacketTime Shortest latency.
results/frames/totalSent Total number of frames sent
results/frames/totalReceived Total number of frames received, not unique to a frame, 

multiple nodes can hear a single frame
results/frames/size Total size of frame messages
results/power/total Total power used
results/power/perNode Average power used
results/transmitting/total Total time transmitting
results/transmitting/timePerNode Average time transmitting
results/transmitting/percent % of time transmitting



Adding Additional Algorithms
Additional algorithms can be created for this simulation.  If the algorithms appropriately extend the 

abstract routing algorithm, then they can be used instead of the three created for this project.  Simply 

just add the path to the class in the input file as described above.

Sample Tests
There were six main tests implemented, 3 stationary node positions and three more adhoc situations. 
The following are the descriptions of the tests implemented.

1. Small network, 9 nodes, communication from one corner to another, no movement

2. Medium network, 25 nodes, communication from one corner to another, no movement

3. Medium network, 25 nodes, random communication, no movement

4. Small network, 9 nodes, random communication, random movement

5. Medium network 25 nodes, random communication, random movement

6. Large network, 600 nodes, source to destination communication, fixed movement of source 
node from corner to corner

Results
Our original plan was to compare three Algorithms DSR, GPSR, and Champ.  We also developed a 

simple flooding algorithm we though would make a good baseline.  

Champ was never completed and will not be compared instead we will compare DSR, 

GPSR and Champ.  Champ was never able to complete any of the important tests with good results.  It 

seems to be having flooding problems that have been hard to track down and correct.  It does ok on 

static tests.  Changes in the Simulation or changes to its source code seem to have made these simple 

tests fail as well.  It is disappointing that Champ will not be able to compared to the other two 

algorithms we have chosen.  Its route caching seemed like it might give it an advantage in this type of 

ad hoc network.

We ran each of the algorithms through six test.  The first test was small network where 

there was no movement and only one node wished to send to one other node.  Test 2 was a bigger 

network that had the same behaviors as test 1.  Test 3 was a large network in which random nodes 

wanted to contact random other nodes.  Test 4 was a large network where the nodes moved and 

communicated randomly.    Test 5 is pretty much the same as 4 with a different random seed.  Test 6 

represents a vehicle tests basically it represents a vehicle traveling through a field of nodes that wants 

to send information to one receiver.   



Illustration 1:  shows the percentage of the packets that were delivered by the working 

algorithms.  This is maybe the most important thing for a routing protocol.  Maybe in some 

applications the most important would be latency.  None of the three tests really sets itself above the 

rest here.  If you really just want to have a no frills algorithm that will deliver nearly all the packets 

Flooding would be a good choice if you can handle the overhead.

It is not a big surprise that all the working algorithms were able to handle the first three test 

relatively well since none of the nodes are moving around and the routes aren't changing.  All the 

working algorithms also seems to pass the test for Random Movement and Random communication.  It 

was interesting that GPSR was not better at the Vehicle test it would seem to be an ideal routing 

algorithm for this kind of test.  It seems that if you are moving knowing your location doesn't gain you 

as much as we thought it might. 

Illustration 2: Shows the (dataDeliver*packetsize)/totalBytesSent as a percentage.  This 

gives an indication of how efficient the algorithms were in delivering data.  This could be very 

important for and Ad-hoc network that will not have a lot of bandwidth to spare.   This really shows 

why the flooding algorithm really cannot be used in many networks it just adds way to much overhead. 

DSR really does an excellent job when the network is one source and receiver in a static network.  This 

is expected since once it sets up a route it should be able to just keep sending data over that route.  The 

rest of the nodes can just sit there doing nothing if they are not on the path.  GPSR having the ability to 

know where nodes are does seem to help it keep its overhead low when nodes are moving around.  This 

chart shows that choosing a routing algorithm for and Ad-hoc can really be influenced by the type of 

communication that will be done on the network.

Illustration 1: 

Flooding DSR GPSR Champ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percent Packets Delivered

Test 1 

Test 2
Test 3

Test 4
Test 5

Test 6



The next thing we looked at was how long the average each algorithm took to deliver a 

packet.  The results of this are shown in Illustration 3: .  It seems that once again the if you don't care 

about overloading the network flooding will deliver the packets the fastest.  GPSR is not to far behind 

so this would probably be a good choice in a network that doesn't have a lot of bandwidth and has some 

way to find the location of each node. 

The number of hops that a packet is going to travel may also be a consideration in some 

networks.  These results are displayed in Illustration 4: flooding is not represented as it counts each 

copy of a packet as one and its results were off the chart around seventy hops per packet.  For the first 

packet making it should find the minimum though since it tries all paths.  It looks like for the most part 

this stat is a tie between DSR and GPSR they both seem to find the shortest it looks like pretty well.  It 

looks like when nodes start to move GPSR has a slight advantage.     

           

Illustration 2: 

Flooding DSR GPSR Champ
0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%
11.00%
12.00%
13.00%
14.00%
15.00%

Percent of Traffic that was Data

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6



  

The results seem to show that the difference between GPSR and DSR doesn't appear to be 

that great.  Since no algorithm has really asserted itself in all tests it seems like the important take away 

is that you need to know what your network to pick the best algorithm.  If your network is going to 

have a lot of movement and you don't want to have a lot of overhead GPSR would probably be your 

best bet.  If you don't think you will have a lot of topology changes then DSR is the best fit.  Since 

neither one really put much distance on the other it may not make a large difference in the end though.  

Illustration 3: 

Flooding DSR GPSR Champ
0.00E+000

1.00E-002

2.00E-002

3.00E-002

4.00E-002

5.00E-002

6.00E-002

7.00E-002

8.00E-002

9.00E-002

1.00E-001

1.10E-001

1.20E-001

1.30E-001

Time in Seconds per packet.

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6



  

Lessons Learned
Writing a proper network simulation is difficult, for several reasons:

● How far should the simulation go in simulating the real environment? There is always a tradeoff 

to be drawn between implementing a more realistic simulation and the time spent on 

implementation. Our simulation did not simulate collisions or attempt to simulate processing 

time or memory used by the algorithms. Such a test might prove not useful anyway, since a real 

implementation on network hardware would likely not involve a high-level language such as 

Java and would be optimized for CPU and memory performance (our code was not).

● It is difficult to validate a simulation, because not only is the expected outcome not entirely 

known, but if a reasonable outcome does not occur it can be hard to tell whether it is due to a 

simulation that is incomplete (does not simulate every aspect of the real environment) or a bug 

in the algorithm. Additionally, once an algorithm works, tweaking its parameters for 

performance is sort of a self-fulfilling prophecy as the environment was designed by ourselves. 

Therefore, any results have to be taken with careful consideration as they may not entirely 

reflect a real execution.

However, there are some strong benefits for network simulations:

Illustration 4: 

DSR GPSR Champ
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number Of Hops

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6

N
um

be
r O

f H
op

s



● A benefit of simulation in general is that a wide variety of planned and controlled environments 

can be designed and the simulation can be run much faster than “real-time,” which allows us to 

examine the results of changing parameters much more quickly and easily than with real 

hardware and real networks.

● It is much easier to implement ideas and algorithms first in a simulation because of the 

capability of rapid development in a high-level language on hardware with ample resources, and 

the ability to simulate large groups of nodes without actually having hundreds of sets of 

networking equipment.

Future Work
There are many possibilities of future work with a simulator.  First, a graphical user interface could be 

implemented.  A GUI would be benefit to verify the algorithms are working appropriately as well as 

showing how the algorithms handle certain situations.  Beyond physical appearance, many more 

environment considerations could be added.  A comprehensive model for collisions should be added, 

especially since this is highly important within a wireless network.  Enhanced power consumption can 

be added to accommodate longer sending ranges to consume more power.  

Some algorithms were not completed in the fullest, and some were completed with less than all 

available features.  Completing these would enhance the results of this simulation.



References
Alvin C. Valera, Winston K.G. Seah and S.V. Rao, CHAMP: A Highly Resilient and Energy-Efficient 
Routing Protocol for Mobile Ad hoc Networks. In Proceedings of the 5th IEEE Conference on Mobile 
and Wireless Communications Networks (MWCN 2002), Stockholm, Sept 9-11, 2002.

Johnson, David B., Maltz, David A., Broch, Josh. 2001. DSR: The Dynamic Source Routing Protocol 
for Multi-Hop Wireless Ad Hoc Networks. in Ad Hoc Networking, edited by Charles E. Perkins, 
Chapter 5, pp. 139-172, Addison-Wesley, 2001. Obtained from 
http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps

Karp, B. and Kung, H. T. 2000. GPSR: greedy perimeter stateless routing for wireless networks. In 
Proceedings of the 6th Annual international Conference on Mobile Computing and Networking 
(Boston, Massachusetts, United States, August 06 - 11, 2000). MobiCom '00. ACM Press, New York, 
NY, 243-254. DOI= http://doi.acm.org/10.1145/345910.345953 

http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps
http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps
http://www.monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps

	Description
	DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks
	Caching and MultiPath Routing (Champ)
	Greedy Perimeter Stateless Routing (GPSR)
	Design
	Core Simulation Design
	Network Data Design
	Node Design
	Routing Algorithm Design
	Dynamic Source Routing
	Greedy Perimeter Stateless Routing
	Caching and Multi-path Routing Protocol


	User Manual
	Run
	Compile
	Input File
	Sample

	Output
	Adding Additional Algorithms
	Sample Tests


	Results
	Lessons Learned
	Future Work
	References

