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Abstract

Embedded sensor monitoring systems deal with large amounts of live time-
sequenced stream data. The embedded system requires a lower overhead data
store that can work with limited resources and be able to run reliably and
unattended even in the face of power faults.

Relational database management systems (RDBMS) are a well-understood
and powerful solution capable of storing time-sequenced data; however, many
have a high overhead, are not sufficiently reliable and maintenance free, or are
unable to maintain a hard size limit without adding substantial complexity.

RealDB is a specialized solution that capitalizes on the unique attributes
of the data stream storage problem to maintain maximum reliability in an un-
stable environment while significantly reducing overhead from indexing, space
allocation, and inter-process communication when compared to a traditional
RDBMS-based solution.



1 Problem

To describe the problem that RealDB will attempt to solve, an example use case
is appropriate. An isolated platform (such as a truck or ship) is collecting time-
sequenced sensor data from a sensor network consisting of sensors with little or
no ability to process that data. Because the platform is isolated, an embedded
computer listens to the sensor network to collect and store the data. To support
periodic data synchronization, the computer supports a data query interface.
The embedded computer needs to be small and low-power in this environment,
so in order to address the needs of the data storage, a database engine that
can work in this environment is required. RealDB aims to be a solution for
the physical storage of the timestamped data that is significantly better than
what can be achieved with a traditional relational database management system
(RDBMS).

The design of the RealDB system revolves around the following assumptions
about its environment and usage. Some of the assumptions and requirements
below reference ACID (Atomicity, Consistency, Isolation, Durability)[I4] con-
cepts that are commonly used as benchmarks in relational databases.

1. Assumptions about the environment that affect the implementation of
RealDB:

(a) The database is storing incoming real-time sensor data; therefore,
data is coming in order.

(b) The system is running on an “embedded” platform, meaning:

i. No interactive interface to the user, or perhaps no end-user in-
terface at all.

ii. Low-powered hardware, such as a system with 32-128MB of
memory running at frequencies less than 1 Ghz.

(c) The system has a limited storage capability (0.5 to 2GB, typically
solid-state flash).

(d) The power source for the system cannot be well-trusted, and power
failures can occur.

(e) The data is timestamped by a clock that always moves forward or
stands still for insignificant (compared to sample rate) amounts of
time while the system is running. During periods of collection, the
clock moves forward at a rate very close to real time.

2. Assumptions about the user’s accepted trade-offs:

(a) While there may be multiple threads collecting data, only a single
thread writes to or reads from the database, eliminating any concerns
about isolation.

(b) Because the database is not a traditional relational database and
only deals with appending to streams, each operation stands alone,
eliminating most concerns about atomicity.



(c) Losing the most recent written data is acceptable when it trades for
fast, unattended recovery.

(d) The important part of the data is the value of the stream over time
for most streams, and not the direct, original samples, giving the
ability to store a compressed sample set that can be reconstructed.

3. Assumptions about the operating system regarding fault tolerance:

(a) The operating system performs writes to the disk in the same order
as RealDB performs them when operated in synchronous mode.

(b) When the system has a power fault, blocks (bounded by some finite,
known size) previously written are unmodified.

(¢c) The data contained in the block being written to during a power fault
is undefined (could be random, zeros, old content, new content, etc.).

RealDB does not aim to be a complete data storage and processing solution;
RealDB’s goal is in data recording. If extensive post-processing is required,
data can be moved out of the embedded system to a more traditional database
system. Additionally, some current research focuses on the data aspect of the
system, such as Aurora[4]. Aurora is a stream processing engine (SPE) that
provides a real-time, event-driven system for processing data stream data, but
it does not include any mechanisms for storing the data. The goal for RealDB
is not to develop an entire SPE, although it could potentially serve as one
component in such a system for archiving the data. Therefore, RealDB does
not provide a processing framework or a specialized streaming query language.
Instead, it provides an application programming interface (API) as well as a
basic command-line data tool for recording and exporting data.

There do exist SPEs and stream databases that have goals similar to RealDB,
such as TelegraphCQ[6] and STREAM[3]. TelegraphCQ is based on the open
source PostgreSQL RDBMS and has goals closest to RealDB, by providing a
data store with a specialized query interface that can perform continuous queries
and joins against other streams and tables. RealDB’s goal is more restricted
as the research focus will be on only the data storage portion and tailored for
the embedded environment. Likewise, STREAM is a similar system, but the
work focuses on the definition of Continuous Query Language (CQL), with little
mention of the data storage.

In contrast to these previous works, RealDB will focus on the two main topics
presented earlier in the section: data storage meant for embedding into a single
purpose application (1, 2a-c), and defining methods for compressing sample sets
and reconstructing stream state (2d) based on user-configurable parameters.

1.1 High-Level Features

RealDB provides the following features that address data recording in the em-
bedded environment.



1. Unattended operation and availability are the most important goals; the
database must be fault-tolerant and any startup recovery to restore database
consistency runs in a short, bounded O(1) time, based on the (predefined)
database configuration.

2. Durability: A power failure does not cause a loss of data written before a
successful flush command. Data written after the last flush may be pre-
served, but for any lost data point, no data point following was preserved
(streams can get truncated).

3. RealDB is scalable to arbitrarily large data sets. Inserting new data takes
O(1) time and memory with respect to the amount of data previously
stored in the database. Retrieving data takes O(log n) time for a single
data point, and O(n) for a range of data points.

4. Since solid-state flash (NAND memory) is likely to be used in an embedded
environment, RealDB’s design focuses on minimizing write cycles to keep
wear on the device to a minimum. NAND devices have a limited number
of erase cycles, which are required to change the data in any memory cell.
With future work, it may be possible to reduce write cycles even more.

5. The database file is compact relative to other solutions, defined by the
number of bytes required to represent a particular data set.

6. Since the device is an embedded system with a low-powered CPU, the
database should use minimal processing power, defined by amount of CPU
time required to record a given data set.

1.2 Reliability

A key requirement for RealDB is to maintain a valid state even in the face of
data corruption due to events such as power loss. The actual method of writing
to the disk and performing the transactions that will prevent total loss of data
but without largely sacrificing performance is the main challenge of the project.
The assumptions about the environment will be the key to performing this task,
most specifically the aspect that it is acceptable to truncate data streams up
to the last flush point when loss occurs, if this loss is necessary to ensure that
there is no corruption or loss of previously committed data and a consistent
O(1) startup time (given a fixed maximum transaction log size and number
of streams). The consistent startup time is key here — for example MySQL’s
MyISAM database format is very efficient, but when it gets corrupted the entire
table needs to be scanned to rebuild the index. This requires at least O(n) time
and disk space with respect to the number of rows as the entire data file is
scanned and copied to a repaired file[11].

Other database formats besides MyISAM might use transactions, which have
the practical effect of limiting or bounding the recovery time and space. How-
ever, performance degrades severely on embedded systems when using common
transactional systems due to the overhead. RealDB will still need transactions,



but intends to improve on this by minimizing transaction activity as allowed
through the trade-offs taken such as delayed commits. Applications using the
RealDB system can decide to trigger commits by time, space, or both. For
example the application might commit/flush the database every 30 seconds, or
every 1000 records. These options allow a trade-off between fault tolerance and
throughput.

1.2.1 Storage Reliability Assumptions

In order to design something that is reliable within a preallocated file, the worst-
case scenario from a hardware point of view when power is lost is considered.
There several possibilities ranging from worst to best:

1. Entire storage corrupted: The entire disk contains random data, or the
host file system, if any, is destroyed and the file no longer exists.

2. Some storage corrupted: Some portions of the database contain random
data, but all others are intact.

3. One block corrupted: The physical block of data currently being written
to becomes random.

4. Part of a block corrupted: The physical block of data currently being
written to contains part of its old contents and part of its new contents
(i.e. partially overwritten but each byte is either old or new state).

5. No data lost: The entire physical block currently being written to is either
entirely in its old state or its new state.

Of course, option 1 is entirely unrecoverable, and option 2 is nearly impossible
to deal with. The assumption used in RealDB is scenario 3 is the worst-case.
The way that flash memory is programmed should only leave one physical block
in jeopardy for corruption at a time. While RealDB’s expected environment has
solid-state storage, scenario 3 is also expected to be viable for modern magnetic
drives that can park the head properly in power failure. Scenario 4 does not
buy much extra room in design, and scenario 5 would likely only occur on
transactional file systems, which is assumed not to be present on the system.
The CorruptionTest application (class org.gillius.realdb.experiments.CorruptionTest

in the code) provided a reasonable validation of the assumption that scenario 3
is a worst-case for flash memory. The results of the test are described in more
detail in the analysis section [7.1]

2 Other Solutions

RealDB’s ability to archive data in the embedded environment is evaluated
against the traditional RDBMS in this section.



2.1 MySQL

Oracle provides the following description of the MySQL database on their web-
site:

The MySQL®) software delivers a very fast, multi-threaded, multi-
user, and robust SQL (Structured Query Language) database server.
MySQL Server is intended for mission-critical, heavy-load produc-
tion systems as well as for embedding into mass-deployed software.[9]

MySQL is one of many popular relational database management systems (RDBMS).
These databases store data in a series of tables that are related through rela-
tionships between their fields. The tables hold records (rows) that consist of a
fixed number of defined columns (fields). In general, RDBMS can be adapted
to functionally solve the time-series storage problem.

One reason why MySQL is not practical to use for solving this problem that
is not specific to any type of table format: MySQL needs to run as a separate
server daemon. Although it is quite efficient, there is no need for a separate
process on an embedded system. There is an embeddable version of MySQL,
but it is only usable from C/C++.[10]

2.1.1 MySQL MyISAM

The MyISAM table format|8] is probably the most suited table format for the
problem of the solutions presented in this section. MyISAM is based on the
ISAM table format, each table consisting of a data file, an index file, and a file
describing the table structure. Assuming no deletes, data is stored sequentially
into the data file. The sequential storage of the data elements allows for very
fast inserts, which is desirable for a stream database.

However, it is easily marked as corrupted if tables are left open during a
power loss or other failure that causes the server to terminate. The repair op-
eration for MyISAM consists of reading the entire data file and copying it to a
new location, and rebuilding the indexes from scratch. This takes a very long
period of time for an embedded system and therefore is not feasible. Addition-
ally, an index file is required that could be larger than the data itself; in fact,
the worst-case scenario for the index is (keylength+4)/0.67 for records inserted
in order.[7] RealDB aims to reduce the indexing overhead by capitalizing on the
fact that stream data is recorded in sequential order.

2.1.2 MySQL InnoDB

MySQL provides InnoDB as an alternative storage backend for its tables. Un-
like MyISAM, InnoDB provides ACID (Atomicity, Consistency, Isolation, and
Durability) guarantees in MySQL. The main difference is that InnoDB is a
transactional database, which provides for greater reliability against faults as
well as allowing atomic updates. The primary suspected issue with InnoDB
is the overhead of its transactions in terms of speed, space, and wear on flash
memory devices.



2.2 Apache Derby

Apache Derby[2] is an embeddable Java database, and recently Oracle includes
a re-branded version of it called “Java DB” into the latest Java runtimes[12].
Compared to MySQL, Derby is meant to be used in a embedded software (into
an application directly without the need of a server) context. There has been
some consideration for running the system in an embedded (low-powered) hard-
ware context, such as its small footprint around 2 megabytes and a Java Micro
Edition compatible driver. Derby does support a server/client design through
the use of an additional server, but only the embedded mode will be evaluated
against RealDB as it most closely matches the requirements for the problem.

3 Detailed Requirements and Functional Specifi-
cation

This section will describe the user-visible details of RealDB that will fit into the
constraints of the stated problem as well as maintain some flexibility around
potential user’s current environments.

3.1 Operating Systems

In order to facilitate cross-platform operation, RealDB is written using Java, and
is capable of running under at any system that supports the Java 1.6 runtime.
Earlier versions of Java may work but are not tested in this project. However,
the raw “partition” mode only works in certain operating systems such as Linux
that expose low-level IO as files in the file system. The benchmarking tool also
uses the proc filesystem in Linux to read metrics on process tree CPU usage
and I/O device statistics. On other operating systems such as Windows only
time and database size metrics are recorded.

3.2 Data Streams

Data streams are the main concept in RealDB. Data streams can have one of
three states:

1. unknown (discontinuity)
2. specified value
3. not yet recorded

Data streams are “continuous” in RealDB, which means that a particular stream
always has a state at a given time. Because of the special values, “unknown /discontinuity”
and “not yet recorded,” a stream has a value for any time point past or present.
For the purposes of recording, time is always moving forward — retroactive
changes to history are not allowed, and so each appended point must have a



time greater than the previous. To mark recording sessions, applications can
mark each stream with a discontinuity at the end of a session.

“Sampled” elements within a data stream are possible when using the Sam-
pledAlgorithm codec. An element being sampled is only meaningful to RealDB
when accessing stream intervals, described later in this section.

3.2.1 Data Streams

1. Data streams have a user-definable, fixed, structure. The user defines the
data type by combining the following primitive elements:

(a) integers: signed 8, 16, 32, 64 bit / unsigned 8, 16, 32 bit
(b) real numbers: IEEE-754 single and double precision floating point
(c) Boolean values (true or false)

2. Each element in the record has an addressable name (as a string). Ele-
ments within a record are also ordered so they may also be addressed by
position.

3. Each record contains an element “time,” which is a signed 64 bit integer
that is the time for that record in milliseconds since Jan 1, 1970 GMT.

4. Data streams are identified by a unique 32 bit integer and a name, which
is not required to be, but is encouraged to be, unique.

3.2.2 Stream Element Codecs

A compression and reconstruction algorithm can be assigned to the data stream
to reduce the number of data points stored and to be able to reconstruct the
stream’s value at any point in time. RealDB comes with predefined algorithms
only for the zero-order cases:

1. StepAlgorithm

(a) Example: speed is 0, and a sample of 0 (exactly the previous value)
is given. We do not store the extra 0. If the value changes at all,
store it. When interpolating, the value is flat over the entire interval.

2. DeadbandAlgorithm

(a) For this algorithm, the deadband is the amount a value must change
since the last recorded sample in order for the change to be significant
(and subsequently stored). As an example, consider a speed of 25
with a deadband setting of 0.5. Therefore, if the next record with a
value of 25.2 arrives, it will not be stored, but a record with value 32.0
will be stored as it is outside of the deadband. When interpolating,
the value is flat over the entire interval. The original value of the
stream will be preserved within an error level as determined by the
deadband.



Users can provide custom compression and reconstruction algorithms. For ex-
ample, it should be possible to implement a first-order (linear) or higher-order
algorithm such as cubic. There will always be a trade-off in the choice of algo-
rithm. More complicated algorithms could store fewer points, but at the cost
of CPU utilization.

3.3 Data Gathering

RealDB supports the ability to gather data from a stream over specified time
ranges. There are two methods for data gathering: records and intervals. For
all queries, RealDB provides a streaming API (one that does not buffer and
return the data), allowing for online algorithms that take O(n) linear time and
O(1) constant memory.

3.3.1 Record Gathering

Record (sampled) data gathering from a data stream is appropriate when direct
access to the stored data is required. Records are retrieved by specifying a start
and end of a time range.

3.3.2 Interval Gathering

Interval gathering returns smart objects that represent reconstructed time-
ranges of data. They are obtained by asking for data within a start and end
range. The time-ranges can be queried for the following information:

e Start time
e End time

e Time span

Average value (by element)

e Maximum value (by element)

e Minimum value (by element)

e Value at a specified time (by element)
e Integral (by element)

The behavior of the intervals is defined by the compression and reconstruction
algorithm. The SampledAlgorithm will return the exact value over the whole
time range, but the integral is undefined (NaN, or not-a-number as defined by
IEEE-754). StepAlgorithm and DeadbandAlgorithm are zero-order and return
values as if the function was flat over the time range. Higher-order custom
algorithms would perform interpolation.



3.4 Fault Tolerance

RealDB is to be resilient to faults caused by power loss, given the operating sys-
tem assumptions (ordered writes and data corruption only in the active block).
However, there can be limitations to the resilience based on the file system
when not operated on a raw device. RealDB attempts to reduce the possibility
of file system corruption by preallocating the entire database file. RealDB is
designed to be entirely resilient to userspace process crashes, where data and
filesystem corruption would not occur (only truncated transactions, which can
be completed or rolled back).

3.5 Size Management

The RealDB database has a fixed size defined when it is created. When the
database is full, new data will replace the oldest data, regardless of which stream
it belongs to.

4 Design and Architecture

4.1 Overview

A RealDB database file (RDB file) is a fixed size file consisting of a number of
blocks with a user-defined size. Based on the reliability assumptions, to ensure
maximum reliability the size of the blocks should be a multiple of the physical
sector size; normally a size like 4096 is safe. When using a raw partition or
device, the file “size” defines the amount of space to use in the beginning of
the raw partition or device. The RealDB database is partitioned into several
sections:

File Header Single block containing file size, block size, and database format
version

Metadata Section Describes the data streams

Block Pool Tracks free blocks and manages transactions and block swapping
(delete from one stream to add to another)

Data Index Tracks blocks allocated to each stream (not data points)

Data Section Contains the data blocks, which consist of a fixed number each
of 1 or more file blocks

Databases are defined in a text file containing statements in the RealDB Defi-
nition Language (RDL), described in section These files allow the user to
set database parameters (such as the file’s block size) and create streams. The
creation of the database is performed in a single operation: reading the RDL,
allocating and formatting the file, and populating the metadata section. Cur-
rently there is no ability to modify the streams after creation, although RDL



allows the user to allocate extra space for additional indices to support adding
streams in the future.

4.2 Metadata Section

The metadata section contains the following information:
e Data block size, in file blocks
e Maximum streams (data index section size is calculated from this)

e Stream information:

o User ID (integer)
o Name
o Ordered list of record elements

- Name

- Codec algorithm used (such as SampledAlgorithm)

- Data type

- Whether or not the element is required in the record (nullable/optional)

4.3 Block Pool and Transactions

The job of the block pool in the database is to keep track of free data blocks,
track allocations of free blocks, and track removals and additions of a block.
When the database fails, it is the job of the block pool to rollback or complete
started operations.

The initial design revolved around simply recording the active operations
that needed to be recovered. However, it did not scale because it required the
recovery process to scan the entire database to find out what happened to repair
the situation. A better solution would operate with linear (O(n)) complexity on
the size of the transaction log (which can be bounded to a maximum size giving
an effectively O(1) recovery regardless of the amount of data in the database).
Edward Sciore describes a design used by traditional databases [15], which is
much easier and elegant than the initial design for RealDB. The design in Sciore
creates a forward-only writing log containing the modifications (block ID, off-
set, old data bytes, new data bytes) to physical blocks on disk. The recovery
manager can do its work using only the information in the transaction log. For
rollbacks it writes the old data to the blocks, for commits it writes the new data.
It might re-write something that was already done but it always ends up with
the right result.

The final solution used in RealDB was not the same as that found in Sciore,
but combined the ideas from both the initial design and the one described in
Sciore. There were two main problems with the generic method given the current
database strategy and design:
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1. RealDB’s architecture separates the logic from the storage format, so
recording byte changes in blocks would involve the higher layer know-
ing how the lower layer serialized the data. There might have been a way
to work around this, but that portion of the implementation was already
done.

2. RealDB does not allow any arbitrary transaction — just "atomic moves"
which cannot be rolled back, so there is no need for an “undo” log. The
combined design leverages the more constrained situation, by reducing the
space the transactions take on disk. Instead of writing the entire block,
the transaction log record describes only the logical changes.

The key feature in from Sciore’s design is a simple recovery process that does
not need to examine the database. The final design in RealDB compromises by
allowing the recovery process to access an exact piece of information identified by
a transaction to confirm its state. In essence, each recovery of a transaction is a
conditional modification (if X then perform Y). This is in contrast with Sciore’s
approach where rollback/playback is unconditional. The compromise allows for
a significant reduction in log entry size by describing the logical changes at a
high level. In the final RealDB design, there are four types of transaction log
entries:

1. Change in the unallocated block pointer (used only before the database is
100% utilized). Fields = {next free block}

2. Removal (allocation) of an unallocated (free) block. Fields = {block num-
ber}

3. Remove a block from an existing stream index. Fields = {block number,
index number, sequence number for index, next block start time}

4. Add a block to an existing stream index. Fields = {block number, index
number, sequence number for index, last block}

Each transaction type has its own fields to provide the recovery process the
information it needs. For the types dealing with block movements, the block
number acts as a transaction ID. For example, with the remove block from index
transaction, the recovery process performs the following steps:

1. Locate the data index noted in the transaction.

2. Check if the sequence number of the head equals the sequence number of
the “original” block recorded in the transaction. If it matches:

(a) Double check that the first block in the index equals the block marked
in the transaction as being removed. Assuming the RealDB algo-
rithms are correct and our assumptions on how database can be cor-
rupted hold, this check should never fail. Since we have the block ID
as the transaction ID anyway, we do this check.

11



Algorithm 1 Steps for transferring a block when database is full

Action What happens if system crashes
immediately after

Find the index whose first block is | Nothing; no disk modifications yet
the oldest data block (source

index)
Start a transaction with a Remove Remove Block is replayed, block
Block entry placed back on free list

Remove the first block from the Block added to (memory) free list
source stream’s index

Write the data block Block added to (memory) free list
End the transaction with a Add Add block is replayed
Block entry
Add the block to the destination Nothing; transaction completed

stream’s index

(b) Remove the first block from the index.

Blocks can become free again if they were “in limbo” (removed but not added)
when the database faulted. If there are any such blocks, they are allocated first
before reclaiming old blocks in use by a stream.

The steps taken for transferring a block (happens when the database is full)
are shown in algorithm

Each of the actions are specified to occur in order by adding them to a in-
memory transaction object. When any particular item gets flushed, it forces
everything before it to occur first. When the transaction itself is committed, it
causes all flush actions to occur in the order they were added (if they weren’t
done already). Ideally this is supposed to delay the operation as long as possible
in the hopes of combining writes (for example by committing many transactions
to disk at the same time). Unfortunately, despite much effort the RealDB system
is unable to handle more than one outstanding “end” transaction at a time;
due to problems with infinite recursion due to circular dependencies on flush
ordering. Fixing this would be a top priority for future work on this project, as
it could cut writes by half or more.

4.4 Data Index

The purpose of the data index is to provide a linear address space for each data
stream. The main portion of the index consists of blocks with the following
format:

1. Sequence number (used to determine the most recent copy in fault recov-
ery)

2. Time of the first (earliest) record in the list of data blocks

12



Data

Stream 1

Stream 2

Figure 1: Initial system state

3. Time of the last (latest) record in the list of data blocks
4. Array of data block numbers (addresses)
5. Checksum, used to check for data integrity on load

The size of the index section is fixed. Each index is allocated enough space to
be able to index a stream that takes up every block in the database to prevent
the need for dynamic index allocation. A concern with pre-allocation is wasting
space, but in the proof-of-concept database, the indexes only take up 0.28% of
the database, which has 8 streams. The overhead is based on the number of
data blocks (which is based on their size relative to a single file block) and the
number of streams.

4.4.1 Index and Allocation Example

This section for the purposes of focusing on the data index and block allocation
methods largely ignores the transaction logging that occurs to ensure reliability
in a crash. Transactions are discussed in more detail in section

As seen in figure [T} no data has been written to the database, so all blocks
are free (F). The allocation map for each stream starts empty.

RealDB caches the state of the data block until it is ready to be committed
(because it is full or due to an explicit flush command). When starting a new
block, the database first checks to see if there are any free blocks left, and if
there is one, allocates the next block by examining then advancing the free
block pointer. Since blocks are taken in order, this operation takes constant
O(1) time and requires only constant O(1) memory. Once all free blocks are
used up, there will no longer ever be any free blocks, as the database will reclaim
blocks starting with the ones containing the oldest data. It may be possible with
future work to delete stream data ahead of time, but this was not implemented

13
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S1|S2|S1|S1|8S2

Stream 1
1 3 4

Stream 2
2 5

Figure 2: Database just filled to capacity

in the initial implementation since the database is a fixed size, there is no real
benefit to explicitly deleting stream data.

In figure[2] all of the free blocks have been allocated. Because the first stream
has been generating more data points than stream 2, it was allocated a larger
portion of the database. The following sequence of events is one possibility of
how the database got into this state:

1. The first records were written to stream 1, so it was allocated block 1, the
first block on the free list.

2. Before the first block filled up, records were written to stream 2, so it was
allocated block 2.

3. Before block 2 was filled up with stream 2’s data, many more records were
written to stream 1 such that it got the next two blocks.

4. Block 2 fills up, so stream 2 is allocated the last free block (5).

From this point on in the database, there will no longer ever be free blocks, so
the free block pointer is no longer used. Whenever a stream needs a new block
of data, a block must be reclaimed. The stream allocation map works as a FIFO
queue, so blocks will only be reclaimed from the old end. The algorithm used
in RealDB will select the block containing the oldest data. Due to the ordered
inserts and the stream allocation maps, this process will take only linear time
in the number of streams there are in the system, as the newest record in the
oldest block for each stream needs to be examined. RealDB actually caches the
oldest index block for each data stream under the assumption that the number of
streams is low enough to be cached. Regardless of caching, this process ensures
that the time to write records does not increase as the number of data points
grows.

14



Data
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Stream 1

Figure 3: State of database after reclaiming a block from stream 1

It is quite possible that the oldest block may be the last block allocated for
a stream, if that stream has not been written to for some time, with respect to
other streams. Therefore, a potential configuration option for the database is to
not consider removing the last block for a stream, if keeping the stream’s last
value is important. With or without this extra behavior, the time and space
complexity and algorithm itself remain the same.

Following on the example, if stream 2 overflows its active block number 5,
a block needs to be reclaimed. Since there are two streams, we only need to
consider the newest record in blocks 1 and 2, the list of oldest blocks for each
stream. The record for stream 1 is older than stream 2, so we reclaim block 1
and immediately give it to stream 2 for writing. The data that was in block 1 is
now lost, if it was not preserved through some other external synchronization,
archiving, or offloading process. Figure [ shows the state of the database after
this operation is complete.

The operation of the database continues similarly as long as data is written
to the streams. The end result is that the database always contains the newest
x bytes of records, excluding variations caused by deleting a chunk of records as
a whole block at a time, and from partially filled blocks. The number and size of
blocks should be configured to balance allocation performance with minimizing
the two exclusions just mentioned to the ideal situation of always deleting purely
the oldest record.

4.4.2 Index Lookup

Given a stream and a timestamp, RealDB locates the starting record for an
iteration:

e The record corresponding to that time exactly (if it exists)

e The latest record before the given time (if it exists)
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e The earliest record (if it exists)
e No record at all (if stream is empty)

To find the location of that record, RealDB drills down through the layers of
indexing. The same criteria for record selection applies to index and data block
selection:

1. Binary search over the index blocks for the block with the given time, the
block immediately prior, or the first block. Because the index blocks are
sorted physically on disk, this is possible.

2. Binary search over the sorted data blocks listed in the index block. Data
blocks contain a header with the time range, so the same technique is
used.

3. Binary search within the records of the chosen data block.

The first two steps involve disk I/0, but the data block is small enough to be
cached in memory, so the final binary search is performed in memory. The
addresses for each of the three items found are stored in a returned iterator
object. The iterator object is capable of iterating over each level, loading each
data block fully into memory at a time:

1. If there is another record in the current data block, return it, else:

2. If there is another data block in the current index block, load it and return
to step 1, else:

3. If there is another index block in the stream index, load it and its first
data block and return to step 1, else there are no more records.

4.4.3 Reliability

The main assumption about data corruption made in RealDB is that the block
being written to during a system fault can change to a random state, but blocks
previously written (in synchronous mode) to disk will be unmodified. The actual
changes to the data index and its header are not logged as transactions, instead
a two block approach is used for the header and modified index blocks . If only
one block is corrupted on system fault, then as long as we do not overwrite
the only copy of information, we can always recover some state. In the data
index case, if the newest block is corrupted the state will rollback. Initially this
technique was to be used to eliminate transactions entirely, but it is not sufficient
— “atomic” operations affecting multiple streams still needed transactions.

The data index reserves 4 special blocks, two for the header, one as a backup
for the tail, and another as a backup for the head. New data blocks are added
to the tail, while blocks to be reclaimed are removed from the head. The blocks
form a circular queue with a fixed size, so the head and tail points wrap around
when they hit the end. The header block contains the following fields:
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5.

Sequence number, used to determine the most recent copy in fault recovery
Head pointer
Tail pointer

Head Advanced flag, set to true if the head pointer was just advanced,
and the alternate head block should not be considered on reload

Checksum, used to check for data integrity on load

Loading an index and “recovery” from a fault is the same operation. Both the
index blocks and the header blocks have a sequence number, which is incre-
mented by one for every write. When loading the index, blocks with the higher
sequence numbers are used.

A description of the algorithm used for flushing the tail, when the tail and
head blocks are not the same:

1.

If the tail pointer is being incremented, or if the last block written was
the alternate tail, write to the block immediately after the tail.

If the tail pointer is not being incremented, write to the current tail loca-
tion or the alternate tail block, whichever was not written last.

If the tail pointer was incremented, update the header. Each write of
the header block alternates between the primary and secondary blocks,
writing always to the oldest one.

The index block is written in a “safe” location, and before the header is up-
dated. If there is a system fault in the above, one of the following happens upon

restarting:

1. The block immediately after the tail was written, but nothing referenced
it, so it had no effect.

2. The tail block version (alternate or primary) that did not contain the most
recent data was being written to and was corrupted. This block will just
be ignored (rollback operation).

3. The old header block was being updated to the new version but was cor-

rupted. The original header will be used (rollback).

When loading the index:

1.

Load both header blocks and choose the “best” block — the one with a
proper checksum that has the greater sequence number, accounting for
overflow (a - b > 0 means a is greater). Note the older or corrupted block
as the next block to be written.

If the “head advanced” flag is true, load the head block, else load both the
block pointed to by the head pointer plus the alternate head, picking the
“best” and noting the next block to be written.
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3. If the head and tail pointer is not the same, load both tail blocks, picking
the “best” and noting the next to write.

A similar technique is used for updating the head block, except that when
“deleting” the head block, the header is updated with the “head advanced” flag
set true. In each failure state, either the block write is rolled back, or the header
write was rolled back. When the index only has a single block (head and tail
pointers are the same), the “alternate head” block is used for alternating writes
of the index block.

4.5 Data Section

The data section simply consists of a set of data blocks, each of which comprise
of a number of file blocks. The larger the data block, the fewer there will be in
number, which reduces the size of the indexes and the number of transactions,
leading to better performance. The main disadvantages to large data blocks
in the current RealDB implementation are partial blocks and data loss — a DB
flush will write a partial block, leaving the rest of the block blank until it is
reclaimed later, and because there are fewer commits to disk, when a system
failure occurs, more data will be lost. While RealDB does not guarantee any
data past the last commit, in practice whenever a data block fills up it is written
to disk and added to the index so that it is not lost. Smaller data blocks increase
the probability and amount of data that will be recovered after the last commit
before a system fault.

RealDB assumes that data blocks are small enough to fit in memory. RealDB
caches the block pending to be written for each stream in memory, and when
reading data, RealDB reads records an entire data block at a time. Therefore,
the maximum data block size is limited based on the amount of memory that
can be dedicated to the database.

4.6 Stream Codecs

In RealDB, a stream codec is responsible for reducing (or compressing) the
original elements in records of a data stream when writing, and reconstructing
the stream intervals when reading.

The codec algorithms are able to see a finite number (defined in their code)
of points before (look-behind) and after (look-ahead) the sample point that is
under consideration for dropping. The points behind were the previously written
points and the points ahead are in “limbo” waiting to be considered. The code is
required to handle the “start” and “end” of a compression /reconstruction period
(denoted by discontinuities) where all points before and/or after are undefined
(null). Therefore, the model of the codec algorithm is a streaming (single pass)
transformation function with a delay equal to the look-ahead. The below table
shows a theoretical transformation of a stream of 5 samples to a stream of 3
samples with a look-ahead value of 2:
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’ Input \ Output ‘

2.0 null
3.0 null
4.0 2.0
4.0 null
4.5 4.0
null null
null 4.5

Zero order interpolation methods (such as deadband, and always sample) are
expected to need no look-ahead, first order needs one look-ahead, and higher
order like cubic or Hermite would need two or more look-ahead points.

As it may be possible for “perfect” compressions based around cubic or Her-
mite methods to be NP-complete, a heuristic algorithm was developed to prove
that it is possible to practically implement higher-order codecs within the cur-
rent framework. One solution capable of considering groups of up to “m” points
is the following:

1. Know the last 2 points output by the algorithm

2. Look at the m+2 most recent points in the stream (the finite sized m
keeps this algorithm linear time with respect to the samples in the stream,
complexity O(n*m))

3. Consider the last 2 output points and the 2 most recent input points.
Form the interpolation based on these 4 points and check the error of the
interpolation on the m (middle) points.

(a) If the interpolation’s error is under the threshold, drop the 3rd most
recent point.

(b) If the error is out of threshold, output the 3rd and 2nd most recent
points (and the most recent point becomes part of the "m" set for
the next period).

4. If the size of the "m" buffer is full, then output the 2 most recent points.

There are some edge cases in the above omitted for simplicity, to express the
point simply that such an algorithm is feasible and could be successful in elimi-
nating a significant portion of points. The summary of this algorithm is that it
theorizes that all of the points “m” can be dropped and continues to add points
to “m” until that theory no longer holds. When it no longer holds it outputs
the pair of points immediately following the “m” points where the theory held.
In the worst case scenario it will output all points but in the best case scenario
it could eliminate points that follow a curve.

Originally the intention was to implement more codecs and do more research
in this area; however, due to the complexity of the project, the work remains
focused on the underlying storage mechanism and therefore the benchmark deals
only with zero order algorithms. The API provided to custom algorithms is
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sufficient to build virtually any algorithm that does not need to alter the element
structure (i.e. change/add/remove element data types). The original concept
proposed allowed for algorithms to modify the structure, but this grew very
complicated very quickly. The discovery of Paul Bourke’s interpolation methods,
which all worked with the original sample points[5], led to the realization that
the extra complexity would not be needed.

5 Implementation

5.1 RealDB Definition Language (RDL)

The RealDB Definition Language (RDL) allows the user to define the parameters
and streams within a database. The lexer and parser for the language is defined
using a grammar provided to the ANTLR parser generator[I] for Java. The
small ANTLR runtime library used by the generated code is the only runtime
dependency for the RealDB core database. The parser generates an object
model for the file, which is used as an input to the DatabaseBuilder class. An
example of an RDL file is shown in figure [4f The full grammar can be found in
the source code file RDBDefinition.g.

SET blockSize = 2048
SET fileSize = 204800
SET maxStreams =3

SET dataBlockSize = 2

CREATE STREAM Test WITH ID 1 {
value float NULL //will use SampledAlgorithm by default
}

CREATE STREAM CarSnapshots WITH ID 2 {

rpm float WITH CODEC DeadbandAlgorithm PARAMS (deadband=50.0),

speed float WITH CODEC DeadbandAlgorithm PARAMS (deadband=5),
passengers uint8 WITH CODEC StepAlgorithm,
driving boolean WITH CODEC StepAlgorithm

Figure 4: Example RDL File

5.1.1 Database Parameters

blockSize Sets the low-level block size of the file, must be greater than or a
multiple of the native block size to ensure complete reliability.

fileSize Size of the file, in bytes, should be a multiple of the blockSize; a
partial block at the end would be wasted.
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maxStreams Amount of space to allocate in the file for data streams. This must
be equal to or greater than the number of streams actually created.
RealDB does not implement adding streams today, but this is a
proposed future task.

dataBlockSize Multiple of blockSize for a raw stream data block.

5.1.2 Creating Streams
e CREATE STREAM <stream name> WITH ID <unique integer user ID>

e <element name> <element type> [NULL| [WITH CODEC <codec name>|
[PARAMS(a=value, b=value, ...)]

o If NULL is specified, the element is allowed to take on a null value,
otherwise it must always have a defined value

e <codec name> takes one of the following options:

o SampledAlgorithm (the default) - Every record is written
o StepAlgorithm - Record is written if the value changed at all

o DeadbandAlgorithm - works only on numeric types; value written
if |nextValue — previousValue| > deadband; takes deadband as a
parameter.

o A fully-qualified class name of a Java class that implements Element-
Codec (allows user-defined codecs).

e <element type>

o sint8, sint16, sint32, sint64, uint8, uint16, uint32 = signed and un-
signed integer types of 8, 16, 32, or 64 bits.

o float, double = 32 bit and 64 bit types, supports IEEE-754 ranges
and special states including denormals.

o boolean — element can be true or false
e Parameters

o Codecs can take parameters to customize their behavior. Out of the
three provided codecs, only DeadbandAlgorithm takes parameters, a
single parameter “deadband.”
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5.2 Testing

Unit tests are used to validate the logical functionality of most of the compo-
nents in the system. Integration tests tie those components together to test the
reliability of the database. In the source code over 230 tests are provided. The
most important tests are the integration tests that test the reliability of the
database in system fault conditions. To make this testable, all code accesses
the file through an interface called BlockFile that abstracts all access to the raw
file. Three BlockFile implementations are key to the integration tests:

ByteArrayBlockFile Provides a memory implementation

ProfilingBlockFile Wraps another implementation to provide statistics on
blocks accessed. This allows a test to determine how many operations
were performed.

FailingBlockFile Wraps another implementation that causes a failure after X
operations, where X can be set arbitrarily. If a write method fails, the
write that was specified is replaced with a write that writes random data
to the location.

There are several variations of the integration test, but they all follow the same
pattern:

1. Create an in-memory database using ByteArrayBlockFile.

2. Run the full test with a ProfilingBlockFile and determine the maximum
number of operations (N). Verify the contents of the database are as ex-
pected by scanning all data streams.

3. Fori=1to N:

(a) Run the test with FailingBlockFile to fail after i operations. Verify
that the database can be re-opened without exceptions and that all
constraints are valid, particularly:

i. Data read for a particular data stream was the data actually
written for that stream.

ii. The only records lost are those after the last commit (flush).

iii. The records that were lost represent a proper truncation of the
stream; for example, if records 1-100 are written, then 1-90 would
be a proper truncation, but 1-80 + 90-100 would not be, because
record 81 was lost but records after it were kept.

The purpose of the integration test was to assert that no matter when the
database failed, it could recover within the required bounds. A brute-force
attempt (try the failure at every IO operation) ensures that all cases are covered.
The different variations of the integration test use different numbers of streams
with different data rates and flush patterns to try to invoke all code paths. A
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possible future work for the project is to run the tests under a code coverage
analysis tool to investigate how good the coverage was. The current integration
tests represent a best effort at covering the cases.

6 Deliverables

The website http://www.gillius.org/realdb/|is the permanent home of the
RealDB project and contains all of the deliverables of the project for public
download. The following are the code (binary and source) deliverables for the
project:

realdb-core The implementation consists of open-source code written in the
Java language that implements the RealDB storage engine and provides
the APIs to allow Java programs to interact with the engine and the data
streams.

realdb-demo A demonstration and testing application that writes data to a
device, handling faults when the device fails (such as removal of the flash
media), and resuming writes where it last left off when the media is re-
stored.

realdb-cli A command line interface allowing the user to create, describe and
read databases, as well as the ability to bulk insert data from a CSV
format.

realdb-browser A graphical tool for inspecting the structure and contents of
a database, including the ability to generate graphs and tables of stream
data. A screenshot of this application is shown in figure [5

realdb-benchmark A benchmark to support the experimental portion of this
project, discussed in detail in section [7.2]

realdb-concept Proof of concept application, described in section [6.1

Documentation for the project includes Javadocs for at least the realdb-core
component, the original proposal, and this final report. The only piece used in
the project not delivered is the full bus maintenance dataset.

6.1 Bus Maintenance Proof-of-concept

The RealDB storage engine could be used in many situations involving high
speed time series data collection. To highlight one such scenario, a proof-of-
concept application was developed centered around a bus fleet maintenance
situation. In this situation, the maintenance supervisor wishes to decrease the
time it takes to diagnose and repair problems with buses that occur while they
are out in the field. He or she installs an embedded device running RealDB
and an application using it which reads the existing vehicle data bus to record
data such as RPM and speed for the engine and transmission over the last few
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Figure 5: Screenshot of the RealDB Browser

weeks. When a driver complains of “poor shifting” while running a route, the
maintenance team is able to connect a PC to the embedded system to download
the RealDB database to analyze the data offline. Using their analysis software
and the driver’s report, the maintainer can locate the anomalous time spans
and see the exact behavior of the engine and transmission to the millisecond
level. This analysis provides two benefits, one being that the maintainer receives
exact information about the problem (beyond the driver saying, for example,
“it shifts weird”), and the second being that the maintainer does not need to try
to replicate the problem to diagnose it, since all of the information needed was
collected by the monitoring system. Both of these benefits achieve the goal of
reducing the time it takes to make a diagnosis. RealDB is a good fit for this
scenario (when compared to the other solutions under study for this project):

1. Its lower overhead and scalability allows the purchase of a cheaper, lower-
powered system.

2. Its fault-tolerance allows for a zero maintenance system, even in the un-
stable power environment of the mobile vehicle.

3. Its ability for automatically managing size of the database allows it to
store the most recent data.

4. The configurable compression and reconstruction capabilities allow the
users to increase the amount of history they can store in the same space,
based on their tolerance of error in the reconstruction. Or, RealDB can
even record every sample if zero-error reconstruction is desired.

To demonstrate this scenario, the realdb-concept project simulates the software
that feeds the storage engine with the vehicle bus data (class VehicleDataSimu-
lation). The concept code includes a tool “AnalysisDemo,” which reuses compo-
nents from realdb-browser to provide a possible targeted graphical interface for
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Figure 6: AnalysisDemo User Interface

the task, shown in figure[f] The AnalysisDemo tool displays the list of incidents
on the left side of the screen. When the user selects an incident, the right side
is populated with a graph of a particular vehicle parameter (stored as a data
stream) over the time range of the incident. A drop-down box allows the user
to select which stream and element of that stream to view.

6.1.1 Data

In the interest of using a realistic data set, the proof-of-concept and benchmark
uses data collected from a city transit bus over a full month as part of a sponsored
research project for the Office of Naval Research[I3]. The data simulation adds
a few derived data streams, giving a total data set size of just over 9.2 million
data points. The RealDB project itself is not associated with, sponsored, or
funded by the ONR research project. Unfortunately, due to restrictions on the
data, the data points cannot be published.

7 Analysis and Conclusions

7.1 CorruptionTest

The CorruptionTest is an experiment that was performed before starting the
RealDB implementation to ensure that the assumptions made about storage
failures during power faults in section [I.2] are reasonable. This test allocates
a fixed size file, clears it with all zeros, then starts writing blocks of random
data with block numbers and checksums. The program was used to write to a
CompactFlash card connected to a USB card reader. While the program was
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writing data, the card was physically pulled out of its slot. After reinserting the
card, the analysis portion of the program checked which blocks were corrupted,
and which were still zeros. The experiment, which was ran multiple times,
showed that the block being written at the time of failure was the only block
corrupted.

7.2 Benchmark Implementation
7.2.1 Metrics

The performance benchmark measures the following metrics:

e Database size (assuming no filesystem overhead). For RealDB this mea-
sures the utilized space, since the data files are a fixed size (50MiB and
100MiB).

e DB startup and creation:

o time

o disk sectors reads/writes
e DB load and shutdown:

o time
o disk sectors read/write
o reads/writes disk millis

o user and kernel mode jiffies (including those of child processes)

7.2.2 Dimensions

e Implementations: RealDB File, RealDB Partition, Derby, MySQL My-
ISAM, MySQL InnoDB

e Size Management: Y/N

e Number of records: every 1 million

7.2.3 Environment
e Ubuntu GNU/Linux 9.10 (Karmic), kernel 2.6.31-21-generic
e Intel Core 2 2.4 GHZ E6600 (CPU frequency scaling left on)
e 2GB RAM

Java 1.6: OpenJDK 6b16-1.6.1-3ubuntu3

Sandisk Ultra IT CompactFlash "15 MB/sec" with 0.5GB unformatted
partition (for RealDB Raw) and 3.5GB FAT32 partition (all others)

26



e Generic USB 2.0 memory card reader "ALLIN1"

o I/0 performance according to “dd”: 5.7MiB/s writes, 6.8MiB/s reads
— The reader is likely the bottlebeck as other machines with different
readers tested faster with the same card.

e MySQL 5.1.46
o MySQL Connector/J JDBC Driver version 5.1.12

e Derby 10.5.3.0 1 with embedded JDBC Driver

7.2.4 Notes

The size management applies significantly only to the non-RealDB configura-
tions, where the benchmark issues a DELETE after every batch of 1000 records
to delete all records older than the first by some amount of time (right now 1000
seconds). For RealDB, the difference is a 50MiB database, which is too small
to hold all of the data versus a 100MiB one, which can hold all of the data.

For SQL databases, the benchmark implements an equivalent step to the
StepAlgorithm that RealDB uses to eliminate duplicate data points, which puts
both systems on equal footing. MySQL and Derby are used as they come "out
of the box", except that on MySQL the benchmark specifies the JDBC URL
parameter rewriteBatchedStatements=true to turn JDBC batches into MySQL
multi-inserts, which offers a huge speed up (about 10x but was not measured
directly).

The benchmark software collects the information on disk reads/writes and
CPU information using a Linux-specific method. The proc filesystem contains
information on the number of CPU jiffies (slices of time) given to a particular
process and its children, as well as read /write sector counters for each disk. The
benchmark reads this information at the start and end of each test to find the
deltas. Because the flash disk is dedicated to the benchmark, the counters are
accurate because all reads and writes are due to the test.

7.2.5 Schema

The RDL used for the RealDB version of the benchmark is shown in figure
[l The SQL used for the MyISAM version is shown in figure [§] The InnoDB
version is the same as MySQL except with “ENGINE = InnoDB”. The Derby
version is similar except for changes due to the different dialect and data types.
For the SQL databases, each type of stream shares the same table. An index is
created on the time column because it is used to select rows for deletion.

7.2.6 Process

The benchmark software runs the entire test suite in a single execution, iterating
over each of the dimensions: implementation, then size management, then by
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SET blockSize 4096

SET fileSize 52428800 #or 104857600

SET maxStreams =38

SET dataBlockSize = 4

CREATE STREAM RPM WITH ID 190 {
value float

}

CREATE STREAM FuelRate WITH ID 183 {
value float

}

CREATE STREAM AccelPedalPosition WITH ID 91 {
value float

}

CREATE STREAM BatteryVolts WITH ID 1682 {
value float

}

CREATE STREAM FuelEcon WITH ID 184 {
value float

}

CREATE STREAM Speed WITH ID 841 {
value float

}

CREATE STREAM VehicleStatus WITH ID 1 {
collecting boolean WITH CODEC StepAlgorithm

}

CREATE STREAM HardAccelEvent WITH ID 2 {
active boolean WITH CODEC StepAlgorithm

}

Figure 7: Benchmark RDL
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DROP DATABASE IF EXISTS ‘realdb_benchmark®;

CREATE DATABASE ‘realdb_benchmark‘;

CREATE TABLE ‘realdb_benchmark®.‘FloatData‘ (
‘streamId¢ INTEGER UNSIGNED NOT NULL,
‘time‘ BIGINT UNSIGNED NOT NULL,

‘value‘ FLOAT NOT NULL,
‘discontinuity‘ BIT NOT NULL,
PRIMARY KEY (‘streamId‘, ‘time‘),
INDEX ‘Index_Time‘(‘time*)

)

ENGINE = MyISAM;

CREATE TABLE ‘realdb_benchmark®.‘BooleanData‘ (

‘streamId‘ INTEGER UNSIGNED NOT NULL,
‘time‘ BIGINT UNSIGNED NOT NULL,
‘value‘ BIT NOT NULL,
‘discontinuity‘ BIT NOT NULL,
PRIMARY KEY (‘streamId‘, ‘time‘),
INDEX ‘Index_Time‘(‘time®)

)

ENGINE = MyISAM;

Figure 8: MyISAM Benchmark SQL Create Script

every million records. To form a truncated dataset, the benchmark just uses the
first N million records of the 9.2 million record dataset. Each implementation
is set up to store its database files only on the flash partition within a spec-
ified directory, with some minor exceptions such as Derby’s small “derby.log”
administrative log file. Then the benchmark performs the following steps:

1. Delete all of the files in the data directory
2. Take a proc snapshot

3. Instruct the database implementation to create a new database, using an
RDL or SQL script

4. Take another proc snapshot to gather the metrics for database creation
5. Load records

(a) While loading records, if on a SQL-based database, after each batch
issue a SQL delete for rows more than 1000 seconds older than the
latest row.

6. Take a proc snapshot and gather metrics for database loading, and add
up the file sizes of all files in the database directory to get database size
(except for RealDB where the file size is already known and fixed, the
benchmark queries RealDB for the number of allocated blocks in the file).
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Because the benchmark software runs all iterations in the same execution pro-
cess, the RealDB and Derby Java classes will be cached in memory. Due to the
amount of work in the benchmark and the fact that the work is almost entirely
1/0 bound, classloading is likely not a significant factor in the performance.

7.2.7 Data

The dataset used is the same raw data used in the proof of concept plus the 2
generated Boolean streams. 9203285 records result from this. For more infor-
mation on the data set, see section [6.1.1

7.3 Benchmark Results and Analysis
7.3.1 Result Notes

While running the benchmark, the time taken to run InnoDB with the size
management code, and Derby in any mode was extreme in comparison to the
other benchmarks. Therefore the record set was truncated to 5 million for
InnoDB with size management and Derby without size management, and Derby
with size management was not even measured. For tables that contain data,
the term “n/t” for “not tested” is used.

When graphing the data there are two types of charts. The first is a line
chart showing each implementation’s performance by the number of records,
which shows the way that the data scales. The second type is a bar chart
showing only 5 million (because Derby and InnoDB stop there) and 9.2 million
records. The bar chart is easier to read for the “bottom line” performance.

The full dataset for all data presented in this section as well as other collected
data not presented in this paper are available with the other deliverables on the
RealDB site in several formats.

7.3.2 Creation Time

The creation time for each implementation was constant time for each imple-
mentation regardless of the number of records, which was not surprising, because
the action to create a database is independent from the number of records. The
exception is the anomaly with Derby creation time; the reason is currently un-
known. Only RealDB differed because of the file size between size-managed and
not. The creation time is graphed in figure [9}

7.3.3 Load Time

As expected, in each implementation, the load time is linear. For RealDB we
can see that the design meets the complexity requirements of O(n) time with
respect to the number of data points. On the line graph Derby is not even
present, because even at 1 million records without size management it takes 3963
seconds, which was 1.4x longer than the entire suite of tests took for MySQL
combined, and far off of this graph. At 5 million records Derby is taking already
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Implementation \ 5M Records \ 9.2M Records ‘

InnoDB 858.618 1588.762
TnnoDB (M) 3173.966 n/t
Derby 21970.746 n/t

Table 1: InnoDB and Derby Load Times

| Implementation [ 5M File [ 9.2M File | 5M Raw | 9.2M Raw |

MyISAM -36.6% -39.8% -26.8% -36.2%

MyISAM (M) | -12.9% | -15.6% | -6.8% 9.2%

InnoDB 83.2% 84.1% 84.4% 84.5%
noDB (M) | 95.5% n/t 95.7% n/t
Derby 99.3% n/t 99.4% n/t

Table 2: Load Time Reduction with RealDB

6 hours to run the benchmark. InnoDB with size management quickly climbs
off of the chart as well. On the bar graph, InnoDB and Derby extend off of
the page. The graph bounds are modified to show the distinctions between the
faster implementations. The data graphs are shown in figure The values in
seconds on the bar graph for InnoDB and Derby are shown in table[l} since they
are not, visible on the graph. In this test, MyISAM performs the best, with or
without size management, but RealDB is much closer to MyISAM than InnoDB
or Derby. RealDB takes 15.6% longer than MyISAM on a file system with size
management enabled, as seen in table

7.3.4 Database Size

The benchmark measures the size of the files on disk created by the database
implementation at the end of each run. For RealDB, the file sizes are fixed at 50
or 100 MiB, so the size presented in this graph is the amount of space utilized
(total space - free data blocks). This size represents roughly the minimum size
file that could be used to store the given data. For the sized-managed versions of
the test, we see RealDB’s utilized space reaches the maximum and stays there,
as expected. The charts are shown in figure [T}

Without issuing deletes, the versions without size management are an at-
tempt to represent the minimum size of the dataset, without having to make
explicit optimization calls. The size management versions of the test is not a
perfect comparison to RealDB, because it is not possible to replicate the same
environment. In the SQL version of the benchmark, after every batch, records
more than 1000 seconds older than the most recent are deleted, whereas in Re-
alDB, new blocks just overwrite the old. In practice, 1000 seconds is reached
very quickly so deletes start happening even at the 1 million level. However,
some comparisons are still possible. InnoDB and Derby’s performance is par-
ticularly surprising because the size is increasing linearly with the number of
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records written, even though the number of records contained in the database is
limited. This suggests that there may be an explicit compaction step required
by the administrator to reduce database size. MyISAM behaves more like ini-
tially expected, staying near a size relative to the number of active rows in the
table.

When only inserts are performed, the MyISAM data file contains a tightly
packed sequence of binary structures representing each row, and taken alone
would probably be smaller than the RealDB database. Therefore, the MyISAM
index files on the primary key and time column likely represent the majority of
the extra overhead. RealDB leverages its advantage of data being inserted (and
stored) in order to eliminate the separate indexing structures.

The entire 9.2 million record dataset is able to fit in the 100MiB RealDB
file, with just over a MiB to spare. Table [3] shows the data reductions when
comparing RealDB to each implementation without size management.

7.3.5 CPU Utilization

The benchmark measures the total CPU usage of the benchmark process and
its children (such as when it launches mysqld) over the load operation. For each
implementation, the time used appears to be linear. In this test, RealDB appears
at the very bottom of the graphs shown in figure so it greatly outperforms
the other solutions in terms of CPU used. The scale of the bar graph has
been adjusted to make the RealDB bars visible in comparison to the MyISAM
implementation. Table [d]shows the summaries of CPU reduction at 5 and 9.2M
records against each implementation. The size-managed implementations are
compared to the RealDB 50MiB database, and the others are compared against
the 100MiB version.

7.3.6 Disk Writes

The benchmark also measures the number of sectors written by the database
during the load process. Minimizing the number of writes reduces wear on flash
media. The results are shown in figure The transactional RDBMS imple-
mentations have much more overhead in this area as compared to MyISAM and
RealDB. The winner in this test is the MyISAM format with size-management,
possibly because of the smaller overall database size. However, the size-managed
version can be perfectly compared to RealDB because the number of active rows
is different due to the delete method used with SQL. When comparing the My-
ISAM version without size management to RealDB, MyISAM takes more disk
writes to store the same data. Similar to the conclusion with database size in
section the extra overhead likely comes from the indexing required in a
generic relational database, which does not apply to the ordered data environ-
ment in RealDB.

The four RealDB variants perform approximately the same number of writes,
regardless of size management. Since RealDB’s size management overwrites the
oldest block with new data, the number of writes is based almost entirely on
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Implementation | Data Reduction at 5M | Data Reduction at 9.2M |

MyISAM 75.3% 75.4%
InnoDB 80.5% 79.6%
Derby 90.8% n/t

Table 3: Data Reduction with RealDB
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| Implementation | 5M File | 9.2M File | 5M Raw | 9.2M Raw |

MyISAM 93.0% 93.3% 94.5% 94.2%

MyISAM (M) 96.1% 96.1% 96.4% 96.0%

InnoDB 94.7% 95.6% 95.8% 96.2%
TunoDB (M) | 98.9% n/t 99.0% n/t
Derby 99.4% n/t 99.5% n/t

Table 4: CPU Utilization Reduction with RealDB
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the number of records inserted, rather than the capacity or utilization of the
database.
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| Implementation | 5M File | 9.2M File | 5M Raw | 9.2M Raw |

MyISAM 55.3% 55.4% 53.7% 53.9%

MyISAM (M) -49.9% -67.5% -55.0% -74.1%

InnoDB 91.6% 91.7% 91.4% 91.4%
TnoDB (M) | 97.0% n/t 96.9% n/t
Derby 98.6% n/t 98.5% n/t

Table 5: Load Writes Reduction with RealDB
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7.4 Reliability Assumptions

Relaibility metrics were not explicitly measured in this project due to the dif-
ficulty of proving that something is not possible. For the conclusions section,
reliability is defined as tolerance of faults described in section [I.2] without re-
quiring a manual and/or expensive repair operation. Therefore, the following
assumptions are used when comparing the implementations in the conclusions
section:

e RealDB is reliable due to its design and testing as described in section [5.2

e MySQL MyISAM format is not reliable because it is not transactional or
advertised to be tolerant of system failures, and producing a corrupted file
is very easy via power, software, or storage fault.

e MySQL InnoDB is reliable because it is transactional and advertised to
be reliable.

e Derby is reliable because it is transactional, which implies reliability when
used in a relational database context.

7.5 Conclusions

Based on the analysis of performance in section and the features of each
implementation, RealDB achieves its goal of significantly improved performance
over the compared RDBMS implementations for the problem of data streams.
The trade-off of a narrower focus provided the possibility of large improvements
in certain areas, when compared to the top RDBMS implementations:

e Total load time is reduced by 95%-96% compared to the fastest reliable
RDBMS implementation, InnoDB.

e Database size is reduced by 75% compared to the smallest RDBMS, My-
ISAM, and 81% compared to InnoDB, the smallest reliable RDBMS.

e CPU utilization is reduced by 93%-99% when compared to MyISAM and
InnoDB.

e Sectors written while loading data is reduced by 54% versus MyISAM and
91% versus InnoDB when the database is large enough to hold all data.
Sectors written when size management is required is inconclusive because
it was not possible to replicate the same delete methods in SQL as was
used in RealDB, but MyISAM may require about half as many writes.
InnoDB requires more writes when size management is required.

Creation time differed greatly between the implementations. RealDB on a file
system and InnoDB preallocate database files, which takes significant time de-
pending on the file system. In this case FAT32 was used, which cannot quickly
create large files of uninitialized content on Linux. RealDB requires linear time
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with respect to the maximum database size in this case, while InnoDB starts
with a file of a configured minimum size. When running on a raw partition
without a file system, RealDB can create a database in less than half the time
as the next fastest, MyISAM. RealDB’s long creation time could be an issue
especially on the first startup of an embedded system. With a 4GiB database,
initial startup would take almost 16 minutes if using the same file system and
hardware as used in this test. Therefore, using RealDB on a file system that
can create large, empty files in reasonable, constant time or operating RealDB
on a raw partition without a filesystem may be required for a proper experience.
An alternative mitigation would be to create the database on the device before
first use in the deployed environment.

Another area to note with RealDB’s performance as compared to MySQL is
the fact that MyISAM without size management employed loaded faster despite
more than double the CPU and disk usage of RealDB. This suggests that Re-
alDB is not utilizing the resources as efficiently as MyISAM. Because RealDB
is single threaded and uses exclusively synchronous writes, the CPU and disk
cannot be utilized at the same time, leaving the disk idle for some periods. It
is also possible that the disk write patterns used by RealDB lowers the effective
I/0 throughput of the flash device.

Outside of performance metrics, when comparing the feature set of the im-
plementations, RealDB has some strong benefits:

e SQL does not provide a way to guarantee that the database stays under
some size. In both reliable RDBMS implementations, Derby and InnoDB,
even when deleting records, the database’s size still increases linearly with
inserts. For an embedded system with limited space, this is not acceptable.

e Ability to use a raw partition without a filesystem for storage, eliminating
concerns about choosing (or having) a file system reliable against system
faults.

However, RealDB has some major disadvantages as compared to RDBMS im-
plementations in general, some due to the tightly focused design, and some due
to the current implementation, that could be improved as future work:

o Its design requires the database to be recreated and all data to be reloaded
if changes to the file’s size or stream structure are required. This could
significantly impact upgrades of a deployed embedded system.

e Explicit flushes leave partially written data blocks with empty space,
which decreases the data density. The data reduction results of 75%-81%
improvement is based on implicit flushing only. It should to be possible
to augment the transactional capabilities to fill the remaining space of a
data block on a subsequent flush.

A SQL database can store more than just stream data. An embedded system
will likely need additional information storage outside of what RealDB can store,
for example configuration, user preferences, and identification. However, if only
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storing a small number of records that rarely change, InnoDB and Derby again
become viable choices, while leaving the possibility for a light-weight alternative
such as SQLite or just simple flat files. Therefore, RealDB is a viable option
for data collection system that delegates the majority of the database work
to a highly specialized and scalable system (RealDB) and leaves the smaller
remaining work, if any, to a lightweight, generic database implementation.

8 Project Post-Mortem
8.1 Schedule

The original milestone definition and schedule follows, along with actual com-
pletion dates:

Milestone 1 First design phase completed, creation of object model and some
stub functionality and tests. Setup of environments and compilers, and
prototypes for high-risk code.

Milestone 2 Creation of maintenance tools to create an empty database on
disk, and simple storage implementation (single stream, no or incomplete
space management)

Milestone 3 Completion of database metadata and functionality required for
writing, including space management but excluding compressed data stor-
age

Milestone 4 Completed research and implementation of compressed data stor-
age and gathering, reconstruction algorithms, and read functionality in-
cluding APIs and query tool

Milestone 5 Completion of proof-of-concept use for RealDB

Milestone 6 Design and implementation of RealDB version of performance
tool and completed design for solving problem using other solutions

Milestone 7 Completion of performance tool versions for MySQL InnoDB,
MySQL MyISAM, and Apache Derby
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Target Planned \ Completed

Preproposal 2006-10-17 | 2006-10-17
Preproposal Presentation | 2006-10-17 | 2006-10-17
Proposal Approved 2008-07-31 | 2008-08-11
Milestone 1 2008-08-31 | 2008-08-28
Milestone 2 2008-08-31 | 2008-09-29
Milestone 3 2008-09-08 | 2009-01-29
Milestone 4 2008-09-22 | 2010-02-28
Milestone 5 2008-10-20 | 2010-04-11
Milestone 6 2008-11-10 | 2010-07-27
Milestone 7 2008-11-24 | 2010-07-27
Report 2008-12-15 | 2010-09-19
Defense 2009-01-15 | 2010-10-05

8.2 Lessons Learned

e Trying to tackle both tasks of data storage and data post-processing to
compress and later rebuild the data was too much. The entire concept
of reducing data by downsampling could be a masters-level project of its
own. As a result, the codec portion of the project was de-emphasized in
favor of data storage. A future project could implement various codec
for RealDB and evaluate their cost/benefit (in terms of CPU utilization
versus space saved) and effects of the codecs on the ability to analyze the
data after recording.

e The method of preserving database state against loss by never overwriting
the latest copy of a critical block (alternating between backup blocks) was
not sufficient in avoiding transactions entirely. Ultimately, the longest
time on the project was spent on the transaction portion, and although
it works within the proper complexity bounds, it is not anywhere near as
efficient as hoped.

e The unexpected addition of complexity from transactions and reliability
was the main technical reason for the delays from the original proposed
schedule. The challenges of working life after college classes constitute the
overall major delay in the project’s completion.

e Version control comments, technical notes, code comments, and code doc-
umentation are critical when recalling the current status and next steps to
work on in a project with long time periods between development sprints.
However, even with strong organization, work in computer science still
requires long periods of dedicated time to be most effective. Eight periods
of 30 minutes over a couple weeks is much less productive than a single
period of four hours, simply because of the time required to pick up where
one left off.

42



8.3

During work on a research project, new knowledge and ideas on different
directions come up. Since we are always learning more through our work,
the temptation to redesign or shift directions has to be limited to prevent
indefinite delays of a project. At a certain point it is simply better to
document the new knowledge or idea as a limitation or future work. The
future work section notes some of the technical lessions learned during the
project that could be solved with more effort or research.

Future Work

Ability to modify the database after construction, in particular, add and
remove streams.

Ability for more than one transaction to be outstanding at a time (commit
multiple transactions in a single write).

Performing a flush will write partial data blocks, leaving unused space.
With some work it may be possible to touch that data block again to fill
it. This is not done now because when re-writing the block to add data,
on failure it can get corrupted and lose the already committed data. By
saving the original data to a backup in the transaction log we can preserve
this space, at the expense of additional writes.

Consider allowing deletion of data before the database fills up, if there is
a possible reason to want this (the database is fixed size).

Investigation to discover the attributes of RealDB’s design that explains
why MyISAM beats RealDB despite using more than twice the CPU and
disk writes.

Measurement of memory usage and read speed metrics.

Improve the block collection algorithm by adding tuning parameters:

o Select the data block whose latest record is the oldest (to prevent
from deleting a very large time span from a stream with a low data
density).

o Don’t reclaim a block if it is the only block for the stream, even if it
is the oldest, preserving at least the most recent value.

o Allow a user “plugin” into the process to disallow deletions of data;
one example is to stop deletes of data that has not been archived
externally.

e Improve integration tests via code coverage analysis.

e Comparison of RealDB to other solutions such as SQLite and non-RDBMS

alternatives.
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